Catalog
Number

26-1126

TRS-80° MODEL 4

omputer

raphics

Radio fhaek Bi:EX-[-] SOFTWARE

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORRP

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL STORE OR FROM A
RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
CUSTOMER OBLIGATIONS

A. CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the “Equipment”), and any copies of Radio
Shack software included with the Equipment or licensed separately (the “Software) meets the specifications, capacity, capabilities,
versatility, and other requirements of CUSTOMER
CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software
are to function, and for its installation

RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO

SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing
defects. THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION. The warranty is void if the Equipment’s case or cabinet has been opened, or if the Equipment or Software has been
subjected to improper or abnormal use |f a manufacturing defect is discovered during the stated warranty period, the defective Equipment
must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer
for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of
a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole
expense. RADIO SHACK has no obfigation to replace or repair expendable items.
RADIO SHACK makes no warranty as to the design, capability, capacity. or suitability for use of the Software, except as provided in this
paragraph. Software is licensed on an “AS IS basis, without warranty. The original CUSTOMER'S exclusive remedy. in the event of a
Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,
participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

C Exc‘;xtn aé gmwged herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf
of 10 SHACK

D Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER.

LIMITATION OF LIABILITY

A, EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
“EQUIPMENT' OR ""SOFTWARE'' SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE “'EQUIPMENT"" OR “‘SOFTWARE". IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING QUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE “EQUIPMENT" OR ""SOFTWARE"".

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSOTONEIER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR “EQUIPMENT" OR ""SOFTWARE"
INVOLVED.

RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software.

No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years
after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or
Software, whichever first occurs.

Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may
not apply to CUSTOMER

RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on one computer, subject to the following
provisions:
A, Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.
Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to
the Software,
CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this
function.
CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically
provided in this Software License. Customer is expressly prohibited from disassembling the Software.
CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in
the operation of one computer with the Software. but only to the extent the Software allows a backup copy to be made. However, for
TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use.
CUSTOMER may resell or distribute unmodified copies of the Sottware provided CUSTOMER has purchased one copy of the Software for each
one sold or distributed. The provisions of this Software License shall also be applicable ta third parties receiving copies of the Software from
CUSTOMER.
G. Al copynght notices shall be retained on all copies of the Software.

APPLICABILITY OF WARRANTY

A The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
CUSTOMER.

B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the authar, owner and/or licensor of the
Software and any manufacturer of the Equipment sold by RADIO SHACK.

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other nghts which vary
from state to state.

TRS-80% Computer Graphics Operation Manual: Copyright 1983, All Rights Reserved, Tandy Corporation.

Reproduction or use without express written permission from Tandy Corporation, of any portion of this manual is
prohibited. While reasonable efforts have been taken in the preparation of this manual to assure its accuracy, Tandy
Corporation assumes no liability resulting from any errors or omissions in this manual, or from the use of the
information obtained herein.

TRSDOS 6 Copyright 1983 Logical Systems, Inc. All Rights Reserved, Licensed to Tandy Corporation.

BASIC Software Copyright 1983, Microsoft, Inc., All Rights Reserved, Licensed to Tandy Corporation.

BASICG Software Copyright 1983, Microsoft, Inc., All Rights Reserved, Licensed to Tandy Corporation.

Contents

To Our Customersceuunn. BN & € 8 6 3§ B EEEpSSRRE § 5 6 4 B § MR (A 94 8 4
1/ Computer Graphics OVervieWuuuuiiiiiiiiiiinneeeeeereerereesennsennnnnnns 7
2/ Graphics BASIC (BASICG) .. cuviittitttiitntttenrenenensansnnnnnnssenenenens 11

BASICG Commandsciviiiiiiinnrnnnererrnerssrasronenneenannes 11

SArTINGEUR om0 5 v 5 5 onmrmmmemmee £ 3 ¥ § § §SVEFAERATRIEE £V S 83 ¢ NN § 5§ 12
3/ Graphics Utilities oovuuttiiititeeiii ittt erennereesannseeesnnnneeennn 45
4/ Graphics Subroutine Library (FORTRAN).ututtttiiiiiiiitinnnenrenereenens 69
5/ Programming the Graphics Boardccciiiiiiiiiiiiieeennnnnennnnnnnns 85
Appendix A/ BASICG/Utilities Reference Summarycc0viiiennnnnn. 87
Appendix B/ BASICG Error Codes and Messagescvvveurrnnnnnnnnnnenns 89
Appendix C/ Subroutine Language Reference Summary..............ccoivivnvennnn.. 95
Appendix I/ Sample PrOZramisS v oo cesvos cosssesinasonsvesssssssssmasinesssssssss 97

7 0 (0 AP 97

Printing Graphics Displaysottt ittt iiitie e 103

FORTRAN Sample Programs.oieiieriiiinieeserneeneeanenneaneanns 104
Appendix E/ Base Conversion Chart.........c.vivuiiiiurnniiiiineseeenereenanns 119
Appeiidii B/ Pixel ' GEid REIEFOHOE: ywvvew 5 o 5 3 3 wwwvswsmsmeees o £ 3 5 5 5 5 FWSREHEEEE & 5§ 5 FHE 123
Appendix G/ Line Style Reference...........ooiiiiuitiirennnninnrnnnreneneneennns 129

Model 4 Computer Graphics

To Our Customers . . .

The TRS-80® Computer Graphics package revolutionizes your Model 4 by letting you draw intricate displays from
simple program instructions. With the highly defined Graphics Screen, the list of practical applications is nearly
endless!

The TRS-80 Computer Graphics package includes a:

® Computer Graphics Diskette
® Computer Graphics Operation Manual

However, before you can use this package, your Model 4 must have 64K of RAM (Random Access Memory) and
one disk drive. Your computer must also be modified by a qualified Radio Shack service technician.

Included on the Graphics diskette are:

® TRSDOS Version 6

® Graphics BASIC (BASICG)

® Graphics Subroutine Library (GRPLIB)

® Graphics Utilities

® Sample Programs in BASICG and FORTRAN

To print graphic displays, you can use any Radio Shack printer that has graphic capabilities such as Line Printer VII
(26-1167), Line Printer VIII (26-1168), DMP-100 (26-1253), DMP-200 (26-1254), DMP-400 (26-1251), or
DMP-500 (26-1252).

You can also utilize the Graphics Subroutine Library with several languages, including, but not limited to,
FORTRAN (26-2219).

About This Manual . . .

For your convenience, we’ve divided this manual into five sections plus appendices:

® Computer Graphics Overview

® Graphics BASIC (BASICG) Language Description
® Graphics Utilities

® FORTRAN Description

® Programming the Graphics Board

® Appendices

This package contains two separate (but similar) methods for Graphics programming:

® Graphics BASIC (BASICG)
® Graphics Subroutine Library

If you're familiar with Model 4 TRSDOS™ and BASIC, you should have little trouble in adapting to Graphics
BASIC. If you want to review BASIC statements and syntax, see your Model 4 Disk System Owner’s Manual.
Then read Chapters 1, 2 and 3, along with Appendixes A, B, D, and E of this manual.

If it’s Graphics applications in FORTRAN you're after, refer to the TRS-80 FORTRAN manual. Then read Chapters
1,2, 3, and 4 as well as Appendixes C. D, E, and F of this manual.

Note: This manual is written as a reference manual for the TRS-80 Computer Graphics package. It is not intended
as a teaching guide for graphics programming.

Notational Conventions

The following conventions are used to show syntax in this manual:

CAPITALS Any words or characters which are uppercase must be typed in exactly as they
appear.

lowercase italics Fields shown in lowercase italics are variable information that you must substitute
a value for.

(ENTER) Any word or character contained within a box represents a keyboard key to be
pressed.

Ellipses indicate that a field entry may be repeated.

filespec A field shown as filespec indicates a standard TRSDOS file specification of the
form: filename/ext.password.:d

punctuation Punctuation other than ellipses must be entered as shown.

delimiters Commands must be separated from their operands by one or more blank spaces.

Multiple operands, where allowed, may be separated from each other by a
comma, a comma followed by one or more blanks, or by one or more blanks.
Blanks and commas may not appear within an operand.

Computer Graphics Overview

1/ Computer Graphics Overview

Graphics is the presentation of dimensional artwork. With TRS-80 Computer Graphics, the artwork is displayed on a
two-dimensional plane — your computer screen. Like an artist’s easel or a teacher’s blackboard, the screen is a
“*drawing board’” for your displays.

TRS-80 Computer Graphics has two colors:

® Black (OFF)
® White (ON)

Graphics programming is different from other types of programming because your ultimate result is a pictorial
display (bar graph, pie chart, etc.) rather than textual display (sum, equation, etc.). This is an important distinction.
After working with graphics for a while, you'll find yourself thinking *‘visually’* as you write programs.

In computer-generated graphics, displays can include tables, charts, graphs, illustrations and other types of artwork.
Once they're created, you can “‘paint’ displays with a variety of styles and shapes, or even simulate animation.

The Computer Graphics program uses a *‘high-resolution’ screen. The more addressable points or dots (called
“'pixels’) on a computer’s screen, the higher the resolution. A lower resolution screen has fewer addressable pixels.

PIXEL_EH*

PIXEL wm—

Lower resolution Higher resolution

Figure 1. Resolution

Since the TRS-80 has high-resolution — 640 pixels on the X-axis (0 to 639) and 240 pixels on the Y-axis (0 to 239)
— you can draw displays that have excellent clarity and detail.

How TRS-80 Computer Graphics Works

The concept of graphics is fairly simple. Each point on the screen can be turned ON (white) or OFF (black).
When you clear the Graphics Screen, all graphic points are turned OFF.

Therefore, by setting various combinations of the pixels (usually with a single command) either ON or OFF, you can
generate lines, circles, geometric figures, pictures, etc.

Model 4 Computer Graphics

The Graphics Screen

TRS-80 Computer Graphics has two *‘screens’’ — Text and Graphics. (We'll call them screens, although they are
really modes.) Both screens can act independently of each other and make use of the computer’s entire display area.

The Text Screen, also referred to as the *‘Video Display,”” is the *‘normal’’ screen where you type in your
programs. The Graphics Screen is where graphic results are displayed. Both screens can be cleared independently.
Note: The Graphics Screen will not automatically be cleared when you return to TRSDOS. It will be cleared when
you re-enter BASICG.

The Graphics Screen cannot be displayed at the same time as the Text Screen.

While working with Computer Graphics, it might be helpful to imagine the screen as a large Cartesian coordinate
plane (with a horizontal X- and a vertical Y-axis). However, unlike some coordinate systems, TRS-80 Computer
Graphics’ coordinate numbering starts in the upper-left corner — (0,0) — and increases toward the lower-right
comer — (639,239). The lower-left corner is (0,239) and the upper-right corner is (639,0).

Since the screen is divided into X-Y coordinates (like the Cartesian system), each pixel is defined as a unique
position. In TRS-80 Computer Graphics, you can directly reference these coordinates as you draw.

About Ranges...

Some TRS-80 Computer Graphics commands accept values within the Model 4 integer range (— 32768 to 32767),
instead of just 0 to 639 for X and 0 to 239 for Y. Since most of the points in the integer range are off the screen,
these points are part of what is called Graphics *‘imaginary’” Cartesian system.

e ™

(0,0) (639,0)

(0,239) (639,239)
. J

Figure 2. Graphics Visible Screen

X

x (—32768,0)

Computer Graphics Overview

y (0, —32768)

(0,0)

(0, 32767)

Figure 3. Graphics “Imaginary” Cartesian System

{457+)

(+32767,0)

Graphics BASIC (BASICG)

2/ Graphics BASIC
Graphics BASIC (BASICG) vs. BASIC

The Graphics BASIC file on the supplied diskette is named BASICG.

You can load and run a BASIC file from either BASICG or BASIC. You cannot run programs that contain BASICG
statements while in BASIC.

Important Note: Because of memory limitations, some programs (i.e., some application programs) will not run in
BASICG. BASICG uses approximately 6.6K more memory than BASIC. Some Graphics Commands use Free
Memory. This means that the larger your BASIC programs are, the more limitations on your Graphics capabilities.

Each Graphics program statement has a specific syntax and incorporates a Graphics BASIC command or function.

Table 1 gives a brief description of the BASICG commands; Table 2 lists the BASICG functions. This section of the
manual will describe each statement and function in detail.

BASICG Commands

Command Description

CIRCLE Draws a circle, arc, semicircle, etc.

GLOCATE Sets the Graphics Cursor and the direction for putting characters on the Graphics
Screen.

LINE Draws a line from the startpoint to the endpoint in the specified line style and color.
Also creates a box.

PRESET Sets an individual dot (pixel) OFF (or ON).

PSET Sets an individual dot (pixel) ON (or OFF).

SCREEN Selects the Graphics or Text Screen.

Table 1

Model 4 Computer Graphics

BASICG Functions

Function Description

&POINT Returns the OFF/ON color value of a pixel.

Table 2

Starting-Up

Before using the diskette included with this package, be sure to make a **safe copy”’ of it. See your Model 4
Introduction to Your Disk System for information on BACKUP.

To load BASICG:
1. Power up your System according to the start-up procedure in your Model 4 Introduction to Your Disk System.
2. Insert the backup diskette into Drive 0,
3. Initialize the System as described in your Model 4 Introduction to Your Disk System.
4. When TRSDOS Ready appears, type:
BASICG

The Graphics BASIC start-up prompts, followed by the READY prompt appear, and you are in Graphics BASIC.
You can now begin BASICG programming.

Remember that Model 4 numeric values are as follows:

Model 4 Numeric Values

Numeric Type Range Storage Requirement Example

Integer —32768, 32767 2 bytes 240, 639, - 10

Double-Precision —1+10% —1+10 38 8 bytes 1230000.00
+1+10% + 11038 3.1415926535897932
Up to 17 significant digits
(Prints 16)
Table 3

12

Graphics BASIC (BASICG)

With each BASICG command or function, there are various options which you may or may not include in a program
statemnent (depending on your needs). Each option is separated from the previous option by a delimiter, usually a
comma. When you do not specify an available option (e.g., you use the default value) and you specify subsequent
options, you must still enter the delimiter or a Syntax Error will result. (See your Model 4 Disk System Owner’s
Manual for more information.)

Because you are dealing with two distinct screens, the Graphics Screen and the Text Screen, we strongly urge you to
read the description of the SCREEN command before continuing.

CIRCLE
Draws Circle, Semicircle, Ellipse, Arc, Point

The CIRCLE command lets you draw five types of figures:

-

Circle Ellipse Arc Pie-Slice Point

Figure 4. Types of Displays with CIRCLE
With CIRCLE, you can enter values for PI (and 2 x PI) up to 37 significant digits without getting an overflow error.
However, only 16 digits are displayed.

3.1415926535897932384626433832795028841
6.2831853071795864769252867665590057682

Model 4 Computer Graphics

However, you'll probably only be able to visually detect a change in the circle's starr and end when PI is accurate to
a few significant digits (e.g., 3.1, 6.28, etc.). The starr and end values can’t be more than 2 x Pl (e.g., 6.2832 will
not work) or an Illegal Function Call error will occur.

(x,y)
Centerpoint

The (x,y) coordinates in the CIRCLE statement specify the centerpoint of the figure. x and ¥ are numeric expressions
in the integer number range.

Example
CIRCLE (x,y),r
CIRCLE (320,120),r
Center
Figure 5. Center of Circle
r
Radius

The radius of a circle is measured in pixels and is a numeric expression in the integer range. Radius is the distance
from the centerpoint to the edge of the figure. Although a negative value will be accepted by BASICG, the results of
using a negative value are unpredictable.

The radius is either on the X-axis or Y-axis, depending on the aspect ratio (see ar). If the aspect ratio is greater than
1, the radius is measured on the Y-axis. If the aspect ratio is less than or equal to 1, the radius is measured on the
X-axis.

Example
12 CIRCLE(320+120) 100
This example draws a circle. The radius is 100 and the centerpoint is (320,120).
C
Color

You can get the ON/OFF (white/black) color of a figure's border and radius lines (see chart/end) by specifying a
numeric value of 1 or 0.

If you omit color, BASICG uses 1 (ON/white).

14

Graphics BASIC (BASICG)

Border

Figure 6. Border of Circle
start/end
Startpoint/Endpoint of Circle
The range for start and end is 0 to 6.283185 (2 x PI).
If you do not enter start and end, the default values of 0 and 6.28, respectively, are used.

A negative start or end value will cause the respective radius to be drawn in addition to the arc (i.e., it will draw a
“piece of the pie’’). The actual start and endpoints are determined by taking the absolute value of the specified start
and endpoints. These values are measured in radians.

Note: Radius will not be drawn if start or end is —0. To draw a radius with start or end as 0, you must use
—0.000...01.

12:00

9:00 3:00

6:00

Figure 7. Clock/Radian Equivalents

Model 4 Computer Graphics

Degrees Radians Clock Equivalent
0 0 3:.00
90 1.57 12:00
180 3.14 9.00
270 4.7 6:00
360 6.28 3:00

Table 4. Degree/Radians/Clock Equivalents

You can draw semicircles and arcs by varying start and end. If start and end are the same. a point (one pixel) will
be displayed instead of a circle.

end

Radius

start

Center

Figure 8. CIRCLE's (~) start, (—) end

You can have a positive start and a negative end (or vice versa) as well as negative starts and ends. In these cases,
only one radius line is drawn.

Arc

end

Center)
Radius

Figure 9. CIRCLE's (+) start, (-) end

Graphics BASIC (BASICG)

Hints and Tips about start and end:

® When using the default values for starr and end, you must use commas as delimiters if you wish to add more
parameters.

® If you use PI, it is not a reserved word in BASICG and must be defined in your program.

ar

Aspect Ratio

You can draw ellipses by varying the aspect ratio from the default value (.5) for a circle (and semicircle).

Every ellipse has a *‘major axis™* which is the ellipse’s longer, predominant axis. With an ellipse (as with a circle),
the two axes are at right angles to each other.

The mathematical equation for determining the aspect ratio is:
ar = length of Y-axis/length of X-axis

® [f the aspect ratio is .5, a circle is drawn.
® If the ratio is less than .5, an ellipse with a major axis on the X-axis is drawn.
® If the ratio is greater than .5, an ellipse with a major axis on the Y-axis is drawn.

Y

X-Axis Ellipse (ar < .5) Y-Axis Ellipse (ar > .5)
Figure 10. CIRCLE’s Ellipse
The range for aspect ratio is a single-precision floating-point number greater than 0.0 (to 1x10%®). Although a
negative value will be accepted by BASICG, the results of using a negative value are unpredictable.
Hints and Tips about aspect ratio:

® Entering .5 as the ratio produces a circle.

® Numbers between 0 and .5 produce an ellipse with a major axis on X.

® Numbers over .5 generate an ellipse with a major axis on Y.

® Even though you can enter large aspect ratios, large numbers may produce straight lines.

Model 4 Computer Graphics

Examples

CIRCLE (320,120) 90,1
This example draws a white-bordered circle with the centerpoint of (320,120) and radius of 90.

CIRCLE (320:+120)+90 1144447
This statement draws a white-bordered ellipse with an origin of (320,120) and radius of 90. The major axis is the
Y-axis.

CIRCLE (320:+120):901+1,+-6,2+-5
This statement draws an arc with a vertex (“‘origin’") of (320,120) and radius of 90. srart is 6.2 and end is 5. Radius
lines are drawn for start and end.

CIRCLE (320:120) +90,1,,4-4
This example draws an arc with a vertex of (320,120) and radius of 90. start is 0 and end is 4. A radius line is
drawn for end.

1@ PI=3.1415926
20 CIRCLE (320:120) +100+1 P11 :2%PI,.5
A semicircle is drawn.

10 CIRCLE (150,100) +100+1,-5,-1

20 CIRCLE (222,100) +100+14+5,1
Two arcs are drawn with the same start and end point. The arc with the negative start and end has two radius lines
drawn to the vertex. The arc with a positive start and end has no radius lines.

CIRCLE (320+120) 140 +:-446.1
This statement draws an arc with a vertex at (320,120) and a radius of 140. Srarr is 4 and end is 6.1. A radius line
is drawn for start.

CIRCLE (320+120) +1404+1,0+1 4.5
This example draws an arc with a vertex of (320,120) and radius of 140.

Sample Program

4 SCREEN @

S CLR

10 FOR X =10 TO 200 STEP 1@
20 CIRCLE (300,100) s%+1 41149
30 NEXT X

49 FOR ¥=10 TO 200 STEP 1@
99 CIRCLE (300,100) sYs1449.1
6@ NEXT Y

79 FOR Z2=1@¢ TO Z@0® STEP 10
80 CIRCLE (300+100) +Z2+14+14.5
90 NEXT Z

108 GOTO S5

Graphics BASIC (BASICG)

A set of 20 concentric ellipses is drawn with a major axis on Y, a set of 20 concentric ellipses is drawn with a major
axis on X, and a set of 20 concentric circles is drawn. The ellipses and circles in each of the three groups are
concentric and the radius varies from 10 to 200.

CLR
Clears the Graphics Screen

CLR clears the Graphics Screen.

Example

10 SCREEN 0
20 CIRCLE(320+120) 1001

This program line will draw a circle. Now type:
CLR

and the Graphics Screen will be cleared but the Text Screen will remain unchanged. This can be seen by typing:
SCREEN 1

GET
Reads the Contents of Rectangular Pixel Area into Array

Important Note: BASICG recognizes two syntaxes of the command GET — the syntax described in this manual and
the syntax described in the Model 4 Disk System Owner’s Manual. BASIC recognizes only the GET syntax
described in the Model 4 Disk System Owner’s Manual.

GET reads the graphic contents of a rectangular pixel area into a storage array for future use by PUT (see PUT).

A rectangular pixel area is a group of pixels which are defined by the diagonal line coordinates in the GET
statement.

The first two bytes of array name are set to the horizontal (X-axis) number of pixels in the pixel area; the second
two bytes are set to the vertical (Y-axis) number of pixels in the pixel area. The remainder of array name represents
the status of each pixel, either ON or OFF, in the pixel area. The data is stored in a row-by-row format. The data is
stored 8 pixels per byte and each row starts on a byte boundary.

19

Model 4 Computer Graphics

Array Limits

When the array is created, BASICG reserves space in memory for each element of the array. The size of the array is
limited by the amount of memory available for use by your program — each real number in your storage array uses
four memory locations (bytes).

The array must be large enough to hold your graphic display and the rectangular area must include all the points you
want to store.

Your GET rectangular pixel area can include the entire screen (i.e., GET(0,0) —(639,239),array name), if the array
is dimensioned large enough.

To determine the minimum array size:
1. Divide the number of X-axis pixels by 8 and round up to the next higher integer.

2. Multiply the result by the number of Y-axis pixels. When counting the X-Y axis pixels, be sure to include the
first and last pixel.

3. Add four to the total.
4. Divide by four (for real numbers) or two (for integers) rounding up to the next higher integer.
The size of the rectangular pixel area is determined by the (x,y) coordinates used in GET:

Position: upper-left corner = startpoint = (x1,yl)
lower-left corner = endpoint = (x2,y2)

Size (in pixels): width = x2—x1+1
length = y2-yl +1
Example
GET(12,10)-(B2,50) »V
This block is 71 pixels wide on the X-axis (10 through 80) and 41 long on the Y-axis (10 through 50).

@ For real: 71/8 = 9x4] = 369 + 4 = 373/4 = 94
® For integer: 71/8 = 9x4]1 = 369 + 4 = 373/2 = 187

Depending on the type of array you use, you could set up your minimum-size dimension statement this way:

@ Real DIM V(83)
or

® Integer DIM VXZ(186)
Examples

10 DIM V(249)
20 CIRCLE (B545) 201
30 GET (10,10)-(120.,80) ,V

An array is created, a circle is drawn and stored in the array via the GET statement’s rectangular pixel area’s
parameters (i.e., (10,10)—(120,80)).

20

Graphics BASIC (BASICG)

Calculate the dimensions of the array this way:
Rectangular pixel area is 111 x 71, That equals:

111/8 = 14 + 71 = 994 + 4 = 998/4 = 250

(10,10) (120,10)

Rectangular
Pixel
Area

(10,80) (120,80)

Figure 11

19 DIM V(30@,30)
20 CIRCLE (5@.,50)+1@
3¢ GET (10.,10)-(80.:80),V

A two-dimensional array is created, a circle is drawn and stored in the array via the GET statement’s rectangular
pixel area’s parameters (i.e., (10,10) —(80,80)).

(10,10)

Rectangular

Pixel e
Area

(80,80)

Figure 12

190 DIM VZ(5G4)
20 CIRCLE (B65:4%5) 5014143
30 GET(10,10)-(1204+80) »V%

A one-dimensional integer array is created, an arc is drawn and stored in the array via the GET statement’s
rectangular area’s parameters.

21

Model 4 Computer Graphics

GLOCATE
Sets the Graphics Cursor

Since the Text Screen and the Graphics Screen cannot be displayed at the same time. you need an easy way to
display textual data on the Graphics Screen. GLOCATE provides part of this function by allowing you to specify
where on the Graphics Screen to start displaying the data, (x,y), and which direction to display it — direction.

The allowable values for direction are:

0 — zero degree angle
I — 90 degree angle

2 — 180 degree angle
3 — 270 degree angle

Examples

10 GLOCATE (320+120) 0

This program line will cause characters to be displayed starting in the center of the screen in normal left-to-right
orientation.

122 GLOCATE (320:10),1
This program line will cause characters to be displayed starting in the center of the top portion of the screen in a
vertical orientation, going from the top of the screen to the bottom of the screen.

20® GLOCATE (630,120) 2

This program line will cause characters to be displayed upside down starting at the right of the screen and going
towards the left.

300 GLOCATE (320,230),3

This program line will cause the characters to be displayed vertically, starting at the center of the lower portion of
the screen towards the top of the screen.

22

Graphics BASIC (BASICG)

LINE
Draws a Line or Box

LINE draws a line from the starting point (x/,y/) to the ending point (x2,y2).

If the starting point is omitted, either (0,0) is used if a previous end coordinate has not been specified or the last
ending point of the previous command is used. If one or both parameters are off the screen, only the part of the line
which is visible is displayed.

With over 65.500 line styles possible, each style is slightly different. You'll find it's almost impossible to detect
some of the differences since they are so minute.

LINE with Box Option

The start and end coordinates are the diagonal coordinates of the box (either a square or rectangle). When you don’t
specify the B or BF options, the **diagonal’” line is drawn. When you specify the B option, the perimeter is drawn
but not the diagonal line. When you specify the BF option, the perimeter is drawn, and the area bounded by the
perimeter is shaded in the specified color (c).

LINE(14@,80)-(500,200) 1,8

(140,80)

(500,200}

Figure 13

23

Model 4 Computer Graphics

style
style sets the pixel arrangement in 16-bit groups.
For example, 0000 1111 0000 1111 (binary), OFOF (hex), or 3855 (decimal).

style can be any number in the integer range (negative or positive). Using hexadecimal numbers, you can figure the
exact line style you want. There will always be four numbers in the hexadecimal constant.

To use hexadecimal numbers for sryle:
1. Decide what pixels you want OFF (bit=0) and ON (bit=1).

2. Choose the respective hexadecimal numbers (from the Base Conversion Chart, Appendix D).

Example
0000 1111 0000 1111 = &HOFOF

Creates a dashed line.

Type Binary Numbers Hex Numbers

Long dash 0000 0000 1111 1111 &HOOFF

“Short-short” dash 1100 1100 1100 1100 &HCCCC

OFF/ON 0101 0101 0101 0101 &H5555

Medium dots 1000 1000 1000 1000 &Hgs88

Table 5. Sample Line Styles

Examples

LINE -(10@.:49)
This example draws a line in white (ON) starting at the last endpoint used and ending at (100,40).

LINE (2,0)-(319,199)
This statement draws a white line starting at (0,0) and ending at (319,199).

LINE(1Q2,100)-(20@,200) +1 4,45
This example draws a line from (100,100) to (200,200) using line style 45 (&HO002D).

Graphics BASIC (BASICG)

LINE (100,100)-(300,200) +1,,8&HODFF
This LINE statement draws a line with ‘‘long dashes.’” Each dash is eight pixels long and there are eight blank
pixels between each dash.

LINE (100,100)-(300:200) +14+,-1000
This statement draws a line from (100,100) to (300,200) using line style — 1000.

LINE (Z200,200)-(-100,100)
A line is drawn from the startpoint of (200,200) to (— 100,100).

18 LINE (32,30)-(180,120)
20 LINE -(120,18@)
30 LINE -(30:30)

This program draws a triangle.

1@ LINE -(50,5@)
2@ LINE -(120,80)
39 LINE -(-100,-100)
490 LINE -(3000,1000)
This program draws four line segments using each endpoint as the startpoint for the next segment.

PAINT
Paints Screen

PAINT shades the Graphics Screen with riling starting at the specified X-Y coordinates, proceeding upward and
downward.

25

Model 4 Computer Graphics

X,y
Paint Startpoint

x,v is the coordinate where painting is to begin and must:

® Be inside the area to be painted.
® Be on the working area of the screen.

For example:

1¢ CIRCLE(3Z2@,120),80
2@ PAINT(320,120) +1+1

A circle with a centerpoint of (320,120) is drawn and painted in white.
tiling
Paint Style

tiling is the pattern in a graphics display. By specifying each pixel, you can produce a multitude of tiling styles
thereby simulating different shades of paint on the screen.

tiling is convenient to use in bar graphs, pie charts, etc., or whenever you want to shade with a defined pattern.
There are two types of riling:

® Numeric expressions
® Strings

Numeric Expressions. There are only two numeric expressions that can be used for the paint style — O and 1. 1
paints all pixels ON (solid white) and 0 paints all pixels OFF (solid black).

To use numeric expressions, enter either a 0 or 1. For example:
PAINT (320,120) 1.1

Strings (Point-by-Point Painting). You can paint precise patterns using strings by defining a multi-pixel grid,
pixel-by-pixel, on your screen as one contiguous pattern.

String painting is called *‘pixel”” painting because you are literally painting the screen *‘pixel-by-pixel”” in a
predetermined order.

You can define the tile length as being one to 64 vertical tiles, depending on how long you want your pattern. Tile
width, however, is always eight horizontal pixels (8 pixels representing one 8-bit byte). The dimensions of a tile
pattern are length by width. Tile patterns are repeated as necessary to paint to the specified borders. Because of its
symmetry, you'll probably find equilateral pixel grids most convenient.

26

Graphics BASIC (BASICG)

Figure 14. Example of an 8-by-8 Pixel Grid

Strings allow numerous graphic variations because of the many pixel combinations you can define.

Important Note: You cannot use more than two consecutive rows of tiles which match the background or an Illegal
Function Call error will occur. For example:

PAINT (1,1) CHR%(&HFF)+CHR%(&HFF)+CHR$(8&HDD?)+CHR$(&HOD)
+CHR$ (&HOO) +CHR$ (&HO@) »1 yCHR$ (&HO@)

returns an lllegal Function Call error.
Using Tiling

You may want to use a sheet of graph paper to draw a style pattern. This way, you'll be able to visualize the pattern
and calculate the binary and hexadecimal numbers needed.

Note: Tiling should only be done on either a totally black or white background; otherwise, results are unpredictable.
To draw an example of a tile on paper:

1. Take a sheet of paper and draw a grid according to the size you want (8 x 8, 24 x 8, etc.). Each boxed area on
this grid, hypothetically, represents one pixel on your screen.

2. Decide what type of pattern you want (zigzag, diagonal lines, perpendicular lines, etc.).

3. Fill in each grid in each 8-pixel-wide row of the tile if you want that pixel to be ON, according to your pattern.
If you want the pixel to be OFF, leave the grid representing the pixel blank.

4. On your paper grid, count each ON pixel as 1 and each OFF pixel as 0. List the binary numbers for eagh row to
the side of the grid. For example, you might have 0001 [000 on the first row, 0111 0011 on the second row, etc.

5. Using a hexadecimal conversion chart, convert the binary numbers to hexadecimal numbers. (Each row equates to
a two-digit hexadecimal number.)

6. Insert the hexadecimal numbers in a tile string and enter the string in your program.

Note: For a listing of commonly used tiling styles, see Appendix E.

27

Model 4 Computer Graphics

Example

For example, if you're working on an 8 X 8 grid and want to draw a plus (** + ") sign:

Binary Hex
g g g 11 118|828 |8 pgegL 1998 18
g g g 11 11802 | 8 ggpgl 19gg 18
g g g 11 11808} 2 pegl 1p9¢@ 18
1 1 1 1 1 1 1 1 1111 1111 FF
1 1 1 1 1 1 1 1 1111 1111 FF
g g g {1 L1818 |9 pegL 1998 18
g g g 1 1 g g 7 ggdgl 1949 18
)) g 11 L8| 8} 28 gggl 199g 18
Figure 15. 8 x 8 Grid
Tile string:
A$=CHR$ (&H1B)+CHR$ (KH18)+CHR$ (8H18) +CHRS$ (BHFF) +CHR$ (&HFF)
+CHR$ (&H18)+CHR$ (&H1B) +CHR$ (&H18)
b
Border

Border is the OFF/ON color of the border of a graphics design where painting is to stop and is a numeric expression
of either 0 or 1. If omitted, 1 (ON) is used and all the pixels on the border are set (solid white).

background
Background Area
Background is a 1-byte character which describes the background of the area you are painting. CHRS$(&H00)

specifies a black background and CHR$(&HFF) is a totally white background. If background is not specified.
BASICG uses CHRS$(&H00).

Painting continues until a border is reached or until PAINT does not alter the state of any pixels in a row. However,
if pixels in a given row are not altered and the tile that was to be painted in that row matches the background tile,
painting will continue on to the next row.

Note: BASICG uses Free Memory for tiling.

28

Graphics BASIC (BASICG)

Examples

10 CIRCLE (30@,100),100
20 PAINT (300+100) 141
Paints the circle 1n solid white.

19 CIRCLE (100,100) ,300
20 PAINT (100,100) 1,1
Paints the circle. Only the visible portion of the circle is painted on the screen.

4 CLR

5 A=1

6 SCREEN @

1@ CIRCLE (320:120) 100

20 CIRCLE (100,100),50

30 CIRCLE (400,200) .60

49 CIRCLE (500:79) .50

50 PAINT (320+120) A1

6@ PAINT (100.:100) A1

70 PAINT (400:200) A1

8@ PAINT (S50@.:70) A1
The tiling style is assigned the value 1 in line 5 (A =1) for all PAINT statements. Four circles are drawn and painted
in solid white.

1@ LINE (140,80)-(500,200) :14B
20 PAINT (260+12@) yCHR$(&HEE)+CHR$(8&H77)+CHR$(00) »1
Paints box in specified tiling style using strings.

10 CIRCLE (300,100) 100

20 PAINT (30@,10@),"D" 1
This example uses a character constant to paint the circle in vertical blank and white stripes. The character **D"’
(0100 0100) sets this vertical pattern: one vertical row of pixels ON, three rows OFF.

1@ CIRCLE (320:120) 200

20 PAINT (320:120)"332211" 1

3@ PAINT (10@,70),"EFEF" 1
This example draws and paints a circle, then paints the area surrounding the circle with a different paint style (line
30). This PAINT statement’s (line 30) startpoint must be outside the border of the circle.

1@ PAINT (3290:120) sCHR$(&HFF) »1

20 CIRCLE (320+120)+100.0

30 PAINT (320,120) CHR$(®)+CHRS$ (&HFF) 4@ yCHR$ (&HFFJ
Paints the screen white, draws a circle and paints the circle with a pattern.

10 PAINT (320,120) »CHR$ (&HFF) +1

2@ CIRCLE (320.,120),100.0

30 PAINT (320,120) ;CHR$(@)+CHR$ (BHAA) ;@ ,CHRS (&HFF)
Paints the screen white, draws a circle and paints the circle with a pattern.

Model 4 Computer Graphics

10 CIRCLE(30680:100) 100
20 A$=CHR$ (BHOO)+CHR$ (&H7E)+CHR$(&H1B)+CHR$ (BH1B8)+CHR$ (&H18)
+CHR$ (&H1B)+CHR$ (&H18)+CHR$ (&HOD)
30 PAINT(300,100) 1A% 1
This draws the circle and paints with the letter T within the parameters of the circle.

10 A$=CHR$ (&H41)+CHR$ (&H22)+CHR$ (&H14)+CHR$ (&H@B) +CHR$ (&H14)
+CHR$ (RH22) +CHR$ (&H41)+CHR$ (BHO D)
2@ PAINT (300:100) A%, 1
This paints Xs over the entire screen.

1 CLEAR 109
3 CLR
5 SCREEN 0
10 TILE$(@)=CHR$(BHZ2Z)+CHR$(&HOD)
20 TILE$(1)=CHRS$ (&HFF)+CHR$ (&HOO)
30 TILE$(2)=CHR$(&H99)+CHR$(&HGB)
49 TILE$(3)=CHR$(&HI9)
5@ TILE$(4)=CHRS$ (&HFF)
6@ TILE$(5)=CHR$(&HF®@)+CHR$ (&HFQ)+CHR%$ (BHOF)+CHR$ (&HOF)
7¢ TILE$(B)=CHR$(&H3C)+CHR$(BH3C)+CHR$ (RHFF)
80 TILE$(7)=CHR$(&H®3)+CHR$ (&HAC)+CHR$ (BH3D)+CHR$ (&HCD)
90 AS=TILE$(@)+TILE$(1)+TILE$(2)+TILE$(3)+TILE$(4)
+TILE$(S)+TILE$(B)+TILES$(7)
100 PAINT(300,100) ,A%1
This example paints the screen with a tiling pattern made up of eight individually defined tile strings (0-7).

&POINT (function)
Returns Pixel Value

The &POINT command lets you read the OFF/ON value of a pixel from the screen.

Values for &POINT that are off the screen (i.e., PRINT &POINT (800,500)) returna — 1, signifying the pixel is off
the screen.

30

Graphics BASIC (BASICG)

Example

19 PSET(300,100) »1
20 PRINT &POINT(300:100)
Reads and prints the value of the pixel at the point’s coordinates (300,100) and displays its value: 1.

PRINT &POINT(3000,1200)
Since the pixel is off the screen, a — | is returned.

PRINT &POINT(-3000,1000)
Since the pixel is off the screen, a — 1 is returned.

PSET(Z200,100) ,0
PRINT BPOINT(Z20@,100)
Reads and prints the value of the pixel at the point's coordinates (200,100) and displays its value: 0.

10 PSET(300,100) 1
20 IF &POINT(302@2,100)=1 THEN PRINT "GRAPHICS BASIC!"
Sets the point ON. Since the point’s value is 1, line 20 is executed and Graphics BASIC is displayed:

GRAPHICS BASIC!

5 SCREEN @
10 PSET(RND(G4@) RND(24@)) 1
20 IF BPOINT(320,120)=1 THEN STOP
30 GOTO 19
Sets points randomly until (320,120) is set.

5 CLR

18 LINE(S0:B2)-(120+100) +14BF

20 PRINT BPOINT(10@.8@)

30 PRINT BPOINT(110.:80)

4@ PRINT B&POINT(115,90)

5@ PRINT BPOINT(S50+49)

6@ PRINT 8&POINT(130,120)
The first three pixels are in the filled box, so the value 1 (one) is displayed for each of the statements in lines 20,
30, and 40. The pixels specified in lines 50 and 60 are not in the shaded box and Os are returned.

Model 4 Computer Graphics

PRESET
Sets Pixel OFF (or ON)

PRESET sets a pixel either OFF (0) or ON (1), depending on switch. If switch is not specified, 0 (OFF) is used.

Values for (x,y) that are larger than the parameters of the screen (i.e., greater than 639 for x and 239 for v) are
accepted, but these points are off the screen and therefore are not PRESET.

Note: The only choice for switch is 0 or 1. If you enter any other number, an Illegal Function Call error will result.

Examples

18 PRESET (5@:+50) ,1
20 PRESET (50:5@) .0
Turns ON the pixel located at the specified coordinates (in line 10) and turns the pixel OFF (in line 20).

5 SCREEN @

18 PRESET (320.,120) »1

20 PRESET (30@,100),1

30 PRESET (34@,140) +1

49 FOR I=1 TO 1@800: NEXT I

5@ PRESET (320:120)

G® PRESET (300,100)

7@ PRESET (340.,140)

8@ FOR I=1 TO 10@0@: NEXT I
Sets the three specified pixels ON (through the three PRESET statements), pauses, and then turns the three pixels
OFF.

PRESET (3000 +1000) +1
The values for (x,y) are accepted, but since the coordinates are beyond the parameters of the screen, the point is not
PRESET.

32

Graphics BASIC (BASICG)

PRINT #-3,
Write Text Characters to the Graphics Screen

PRINT #-3, is used to write text characters to the Graphics Screen. This is the easiest way to display textual data
on the Graphics Screen. Characters are displayed starting at the current Graphics Cursor and going in the direction
specified by the most recently executed GLOCATE command. If a GLOCATE command was not executed prior to
the PRINT #-3, command, a direction of 0 is assumed.

PRINT#-3, will only print text characters (see Appendixes of the Model 4 Disk System Owner’s Manual). Each
character displayed in the 0 or 2 direction uses an 8 x 8 pixel grid; each character displayed in the | or 3 direction
uses a 16 X 8 grid. Executing this command will position the Graphics Cursor to the end of the last character that
was displayed.

Displaying text in direction 0 engages a wraparound feature. If the end of a line is reached. BASICG will continue
the display on the next line. If the end of the screen is reached, BASICG will continue the display at the beginning
of the screen without scrolling. If there is not enough room to display at least one character at the current Graphics
Cursor, an Illegal Function Call error will result. When displaying text in other directions, an attempt to display text
outside of the currently defined screen will cause an lllegal Function Call error to be given.

PSET
Sets Pixel ON (or OFF)

PSET sets a pixel either OFF (0) or ON (1), depending on switch. If switch is not specified, 1 (ON) is used.
The only choice for swirch with PSET is 0 and 1. If you enter any other number, an Illegal Function Call will occur.

Values for (x,y) that are larger than the parameters of the screen (i.e., greater than 639 for x and 239 for y) are
accepted, but these points are off the screen and therefore are not PSET.

Note: The only distinction between PRESET and PSET in BASICG is the default value for switch. The default value
for PRESET is 0, while the value for PSET is 1.

33

Model 4 Computer Graphics

Examples

10 A=1
2@ PSET (50,50) A
Turns the pixel located at the specified coordinates ON.

1@ PSET (RND(B4@) RND(Z240)) +1
20 GOTO 10
Pixels are randomly set to | (ON) over the defined area (the entire screen).

PSET (-300,-200) 1
The values for (x,y) are accepted, but since it is beyond the parameters of the screen. the pixel is not set.

10 PSET (320+120) 41
20 A$=INKEY$: IF A%$= "" THEN 20
39 PSET(320+120) .9
Line 10 sets (*"turns ON"") a pixel: line 30 resets (**turns OFF"") the same dot.

PUT
Puts Rectangular Pixel Area from
Array onto Screen

Important Note: BASICG recognizes two syntaxes of the command PUT — the syntax described in this manual and
the syntax described in the Model 4 Disk System Owner’s Manual. BASIC recognizes only the PUT syntax
described in the Model 4 Disk System Owner's Manual.

14

Graphics BASIC (BASICG)

The PUT function puts a rectangular pixel area stored in an array, and defined by GET, onto the screen. GET and
PUT work jointly. Together, they allow you to *‘get’" a rectangular pixel area which contains a graphic display,
store it in an array, then ‘‘put’’ the array back on the screen later.

Remember that before you GET or PUT, you have to create an array to store the bit contents of the display
rectangular pixel area. The size of the array must match that of the display rectangular pixel area.

PUT moves your GET rectangular pixel area to the startpoint in your PUT statement and the startpoint is the new
upper-left corner of the rectangular pixel area.

To illustrate:

5 DIM V(3)
10 GET (243)-(74+7) 4V
100 PUT S0:50)VPSET

After GETting, PUT this rectangular pixel area to (50,50). The new coordinates are:

(50,50) (51.50) (52,50) (53,50) (54,50) (55.50)
(50,51) (51,51) (52,51) (53,51) (54.51) (55,51)
(50.52) (51.52) (52,52) (53,52) (54.52) (55,52)
(50,53) (51,53) (52,53) (53,53) (54,53) (55.53)
(50,54) (51,54) (52,54) (53,54) (54,54) (55.54)

The rectangular pixel area ((50,50) —(55,54)) is exactly the same pixel size as (2,3) —(7,7); only the location is
different.

(2,3) (7,3)
-~ e LT
- = —~— = s -~
“GET” — s - — —~ -
RECTANGULAR ~|— =~
PIXEL =~ S~
AREA - - - g
— —
@n = 77~ =~ . _(50,50) ~~ -, (6550
= - -~ k< -~ - “pyT
g o = RECTANGULAR
S~ ~d_ PIXEL
=~ ~~ _AREA
— ~ - - - — -~ - e
(50,54) (55,54)
Figure 16

With PUT, action can be PSET, PRESET., OR, AND, or XOR.

These operators are used in BASICG to test the OFF/ON (or 0/1) conditions of a pixel in the original pixel area and
the destination pixel area.

35

Model 4 Computer Graphics

For example (using PSET), the pixel is set ON only if the bit in the PUT array is set ON. If the bit is OFF, the pixel
is turned OFF (reset).

With PRESET, the pixel is set ON only if the bit in the PUT array is set OFF. If the bit is ON, the pixel is turned
OFF (reset).

Using OR, the pixel is set ON if the bit in the PUT array is ON or the corresponding pixel in the destination area is
ON. In all other cases, the pixel is turned OFF (reset). In other words:

__OR | OFF ON
OFF OFF ON
ON ON ON

With AND, the pixel is set ON, if both the bit in the PUT array and the corresponding pixel in the destination area
are ON. In all other cases, the pixel is turned OFF (reset). In other words:

OFF ON
OFF OFF
ON OFF ON

Using XOR, the pixel is set ON if either the bit in the PUT array or the corresponding pixel in the destination area
(but not both) is ON. In all other cases, the pixel is turned OFF (reset). In other words:

=4 OFF ON
OFF OFF ON
ON ON OFF

The following BASICG program will graphically illustrate the differences between the various action options. Since
the program will give you a **hard-copy’’ printout of the action options, you'll need to connect your TRS-80 to a
graphic printer. See ‘“*Graphics Utilities™ later in this manual for more details on using the Computer Graphics
package with a printer.

36

Graphics BASIC (BASICG)

18 DATA "OR"s "AND". "PRESET", "PSET", "XOR"
20 CLR : SCREEN @

30 FOR Y= 1@ TO 210 STEP 5o

40 FOR X= © TO 400 STEP 200

SO LINE (X+4@,Y-3)-(X+100,Y+25) ,1,4B
6@ NEXT X

70 LINE (50,Y)-(890,¥+10) +1,BF

80 FOR X= 200 TO 400 STEP 200

90 LINE (X+50sY)-(X+7@,Y+20) +1,BF
100 NEXT X

110 NEXT Y

12¢ DIM V(1@@)

130 GET (504+10)-(90,30) sV

14¢ FOR N=1 TO 5

1580 R= (N-1)#%5+1

160 READ A%

165 GLOCATE (13BsR*12),9d

17@¢ PRINT #-3, A%;

175 GLOCATE (3G0:R*10) 4@

18@ PRINT #-3, "="3

19¢ ON N GOTO 200, 210, 220+ 230, 240
200 PUT (450,10), WV,0R: GOTO 250
210 PUT (450:60), WV ,AND: GOTO 259
220 PUT (450.:110) V,PRESET: GOTO 250
230 PUT (450,16@)s U,PSET: GOTO 259
240 PUT (450:+210) 4 YV ,X0OR

230 NEXT N

26@ SYSTEM "GPRINT"
27@ SCREEN 1

Bl or l - r
Bl Ao l - |

B pReseT I = |mm
L PSET I = L
R o I = ..

Figure 17

Model 4 Computer Graphics

Hints and Tips about PUT:

® An Illegal Function Call error will result if you attempt to PUT a rectangular pixel area to a section of the screen
which is totally or partially beyond the parameters of the screen. For example:

GET(5@0,50)-(150,15@) sV
PUT(Z20@ +2@0) sV ,PSET

returns an error because the rectangular pixel area cannot be physically moved to the specified rectangular pixel
area (i.e., (200,200) —(300,300)).

® If you use PUT with a viewport (see VIEW), all coordinates must be within the parameters of the viewport or
you’ll get an Illegal Function Call error.

Examples
PUT with PSET

16 DIM VZ(B3)

15 SCREEN @

17 CLR

20 CIRCLE (30:30),10

30 GET (10410)-(40,40) ,V%
48 FOR I=1 TO 500@: NEXT I
°@ CLR

6@ PUT (110,11@) V% ,+PSET
70 FOR I=1 TO 5S@@: NEXT I

In this example, the circle is drawn, stored, moved and re-created. First the white-bordered circle appears in the
upper left corner of the screen (position (30,30) — program line 20). After a couple of seconds (because of the delay
loop). it disappears and then reappears on the screen — (110,110) — program line 60.

What specifically happened is:
l. An array was created (line 10).
2. A circle was drawn (line 20).

3. GET — The circle which was within the source rectangular pixel area, as specified in the GET statement’s
parameters is stored in the array (line 30).

4. The screen is cleared (line 50).

5. PUT — The circle from the array was PUT into the destination rectangular pixel area as specified in the PUT
statement (line 60) with the PSET option.

-——————-————] 1

Graphics BASIC (BASICG)

5 SCREEN @

6 CLR

180 DIM VZ(700)

20 LINE (20,20)-(20,80)

32 LINE (B@,0)-(80.,80)

49 LINE (3030)-(32,80)

5@ LINE (10,5)-(10,80)

6@ GET (2,0)-(100,100) ,V%
70 FOR I=1 TO 100@0: NEXT I
80 PUT (189,120) ,V%L,PSET
90 FOR I=1 TO 1000: NEXT I

Draws four lines. GET stores the lines in the rectangular pixel area. PUT moves the lines to another rectangular
pixel area.

SCREEN
Selects Screen

SCREEN lets you set the proper screen. SCREEN 0 selects the Graphics Screen; SCREEN 1 selects the Text Screen.
Any value other than 0 or 1 with SCREEN gives an error.

SCREEN is convenient to use when you want to display either a Graphics Screen or a Text Screen. For example,
you may have run a program and then added to it. With SCREEN, you can remove the graphics display, add to the
program, and then return to the Graphics Screen.

Whenever BASICG tries to display a character on the Text Screen (like in an INPUT or PRINT statement), the
screen is automatically set to the Text Screen. If the program is still running after executing the statement, BASICG
will revert to the screen that was in effect prior to executing the statement.

Examples

1@ SCREEN 1

20 LINE (150.:150)-(200,200)
The computer executes the short program but the Graphics Screen cannot display the graphics because of the
SCREEN 1 command. To display the line, type: SCREEN 0

39

Model 4 Computer Graphics

1@ CLR

20 SCREEN 1

3@ LINE(1@,10)-(255,191)

40 LINE(®+191)-(25540)

5@ A%=INKEY$: IF A%$=""THEN 50

60 SCREEN @

7¢ A$=INKEY$: IF A$="" THEN 70

80 GOTO 1@
The computer executes the program (draws two intersecting lines) but the screen cannot display the graphics because
of SCREEN 1. By pressing any key, the graphics are displayed because of SCREEN 0.

5 CLR

1@ CIRCLE(Z200+100) 100

20 PAINT (200,120),"44" 1
Now run the program and type:

SCREEN @
This command turns the Graphics Screen ON. By entering the SCREEN 1 and SCREEN 0 commands, you can
alternately turn the Graphics Screen OFF and ON without losing the executed program display.

VIEW (Command)
Redefines the Screen (Creates a Viewport)

VIEW creates a *‘viewport’” which redefines the screen parameters (0-639 for X and 0-239 for Y). This defined area
then becomes the only place you can draw graphics displays.

If you enter more than one viewport, you can only draw displays in the last defined viewport.
Since VIEW redefines the SCREEN:

® CLR clears the interior of the viewport only.

® If you PSET or PRESET points, draw circles, etc., beyond the parameters of the currently defined viewport, only
the portions that are in the viewport will be displayed.

® If you try to read a point beyond the viewport (with POINT), it will return a — 1.

® You can only GET and PUT arrays within the viewport.

® You can’t PAINT outside the viewport.

Graphics BASIC (BASICG)

The upper-left corner of the viewport is read as (0,0) (the “‘relative origin'’) when creating items inside the viewport.
All the other coordinates are read relative to this origin. However, the ‘‘absolute coordinates’” of the viewport, as
they are actually defined on the Graphics Cartesian system, are retained in memory and can be read using VIEW as
a function.

Every viewport has absolute and relative coordinates and graphic displays are drawn inside using the relative
coordinates. For example:

10 VIEW (100,100)-(200.,200) 40,1
20 LINE (30:15)-(B0:60) »1

(100,100) A.C. (200,100) A.C.
(0,0) R.C. (30,15) (100,0) R.C.
R.C.
R.C.
(100,200) A.C. (80,60) (200,200) A.C.
(0,100) R.C. (100,100) R.C.
Figure 18

Note: After each of the following examples, you'll have to redefine the entire screen to VIEW (0,0) —(639,239)
before performing any other Graphics functions.

Examples

VIEW (100,100)-(200,200) 0,1
Draws a black viewport (pixels OFF) that is outlined in white (border pixels ON).

UIEW (1082,100)-(200,200) »1 1
Draws a white viewport (pixels ON) that is outlined in white (border pixels ON).

UIEW (50+50)-(100:100) 1.0
Draws a white viewport (pixels ON) that is outlined in black (border pixels OFF).

10 VIEW (10:10)-(600200) 1041

20 VIEW (50:50)-(100,100) :0 1

30 LINE(RND(S@@) RND(19@))-(RND(50@) »kRND(190))

49 GOTO 30
First you defined a large viewport that almost covered the entire screen. Next you defined a smaller viewport. The
Random command draws lines within the specified parameters but only the segments of the lines that are within the
parameters of the smaller viewport are visible since it was specified last.

10 VIEW(B®:8@0)- (409 ,200) +d 41
20 VIEW(100,90)-(300,170) 2,1
30 VIEW(120,100)-(200,200) 40,1
40 VIEW(S0,50)-(100,100) 4241
Draws four viewports. All further drawing takes place in the last viewport specified.

4]

Model 4 Computer Graphics

10 VIEW(2104+80)-(420+160) 101

2@ CIRCLE(300,120) 1801

3@ LINE(154+15)-(B@+60) +1

49 CIRCLE(9@.,40) 45041

SO LINE(4@,30)-(500+30) »1
Draws a viewport. Draws a circle but only a portion is within the parameters of the viewport. This circle’s
centerpoint is relative to the upper left corner of the viewport and not to the absolute coordinates of the graphics
Cartesian system. A line is drawn which is totally within the parameters of the viewport. Another circle is drawn
which is totally within the parameters of the viewport. Another line is drawn which is only partially within the
parameters of the viewport.

18 VIEW (190,70)-(440,180) 10,1

20 CIRCLE (300,149) 417041

3¢ CIRCLE (10@,230),400 1

4¢ LINE (10:10)-(5004+230) 11
Draws a viewport. A circle is drawn but only a portion is within the parameters of the viewport. Another circle is
drawn and a larger portion is within the parameters of the viewport. A line is drawn but only a segment is within the
parameters of the viewport.

&VIEW (function)
Returns Viewport Coordinates

&VIEW returns a corner coordinate of a viewport. It is important to note the parentheses are not optional. If you
enter the &VIEW function without the parentheses, a Syntax Error will result.

To display one of the four viewport coordinates, you must enter one of the following values for p:

® 0 returns the upper left X-coordinate
® | returns the upper left Y-coordinate
® 2 returns the lower right X-coordinate
® 3 returns the lower right Y-coordinate

Important Note: When you have defined several viewports, & VIEW only returns the coordinates of the last-defined
viewport.

42

Graphics BASIC (BASICG)

Examples
Set up the following viewport:

VIEW(100+8B0)-(220,150) :0 1

Now type: PRINT &VIEW(®) (ENTER
Displays: 100
Type: PRINT &VIEW(1) (ENTER
Displays: 8@
Enter: PRINT &VIEW(2Z) (ENTER
Displays: 220
Type: PRINT &VIEW(3) (ENTER
Displays: 150

Set up the following viewports:

VIEW(10@,80)-(220,150) 2,1 (ENTER)
VIEW(250+170)-(350,220) 101

Now enter: PRINT &VIEW(@) (ENTER
Displays: 250
Type: PRINT &VIEW(1) (ENTER
Diplays: 170
Now type: PRINT &VIEW(2) (ENTER
Displays: 350
Type: PRINT &VIEW(3) (ENTER
Displays: 220

43

Graphics Utilities

3/ Graphics Utilities

There are eight utilities included with the TRS-80 Computer Graphics package which are intended to be used as
stand-alone programs. However, if you are an experienced programmer, you can use these with BASICG and
FORTRAN. The source-code for each utility, that illustrates Graphics programming techniques, is listed later in this
section.

The Graphics Utilities let you:

® Save graphic displays to diskette.

® [oad graphic displays from diskette.

® Print graphic displays on a graphics printer.
® Turn graphics display OFF or ON.

® Clear graphics memory.

To use these utilities from BASICG, use the SYSTEM command followed by the name of the utility in quotation
marks (e.g., SYSTEM"GCLS" (ENTER) and control returns to BASIC Ready. From TRSDOS, enter the utility
directly, without quotation marks (e.g., GCLS (ENTER).

To call these routines from FORTRAN, see the Subprogram Linkage section of your TRS-80 Model 4 FORTRAN
Manual (26-2219).

Utilities

Command Action

Clears graphics screen.

Lists graphics on the printer.

GPRT3 o Prints graphic display on the printer without
90 derae rotation. - |

GRON Tums Graphic Screen ON. |]

Table 6

GCLS
Clears Graphics Screen

GCLS clears the Graphics Screen by erasing the contents of graphics memory corresponding to the visible Graphics
Screen. GCLS erases graphics memory by writing zeroes (OFF) to every bit in memory. GCLS does not clear the
Text Screen (video memory).

45

Model 4 Computer Graphics

Examples
When TRSDOS Ready is displayed, type:
GCLS
or when the BASICG READY prompt is displayed, type:

SYSTEM"GCLS" (ENTER
or

10@ SYSTEM"GCLS"

GLOAD
Loads Graphics Memory from Diskette

Note: There cannot be spaces within a file specification. TRSDOS terminates the file specification at the first space.

With GLOAD, you can load TRSDOS files that have graphic contents into graphics memory. These files must have
been previously saved to diskette using GSAVE.

Examples
When TRSDOS Ready is displayed, type:

GLOAD PROGRAM/DAT.PASSWORD:®
or when the BASICG READY prompt is displayed. type:

SYSTEM"GLOAD PROGRAM" (ENTER
or
1@@¢ SYSTEM "GLOAD PROGRAM"

GPRINT
Lits Graphic Display to Printer

GPRINT lets you print graphics memory on a graphics (dot-addressable) printer, such as Radio Shack’s DMP-100
(26-1253) or DMP-200 (26-1254). Both of these printers have a 9'" carriage. However, distortion will occur when

Graphics Utilities

Graphic routines are printed with GPRINT. This is because GPRINT is not a true pixel-by-pixel **Screen Dump’’
since the pixel size and spacing on the screen is different from the pixel size and spacing on the Printer. GPRINT is
a point of departure for you to obtain hard-copy representations of graphics.

To print graphic displays, GPRINT turns the contents of the Graphic Screen clockwise 90 degrees and then prints.
However, FORMS must be used to set printing parameters.

See your Model 4 Disk System Owner’s Manual and printer owner’s manual for details on setting printing
parameters.

Important Note! Do not press while GPRINT is executing.

Examples
When TRSDOS Ready is displayed, type:
GPRINT
or when the BASICG READY prompt is displayed, type:

SYSTEM"GPRINT"
or

100 SYSTEM"GPRINT"

For a complete GPRINT sample session, see Appendix D.

GPRT2
Print Graphics

GPRT?2 is similar to GPRINT but is designed for use with wide-carriage (15”) printers such as the DMP-400 and
DMP-500.

GPRT2 is different from GPRINT in that the image is not rotated 90 degrees and a different aspect ratio is used.
If GPRT2 does not produce the quality of printout you desire, try GPRT3 or GPRINT.
Important Note! Do not press (BREAK) while GPRT2 is executing.

Examples
When TRSDOS Ready is displayed, type:
GPRTZ
or when the BASICG READY prompt is displayed, type:

SYSTEM"GPRT2" (ENTER
or
10® SYSTEM"GPRTZ"

47

Model 4 Computer Graphics

GPRT3
Print Graphics (Double on the Y-Axis)

GPRTS3 is similar to GPRINT but is designed for use with wide-carriage (15”) printers such as the DMP-400 and
DMP-500.

GPRT3 is different from GPRINT in that the image is not rotated 90 degrees and a different aspect ratio is used.
If GPRT3 does not produce the quality of print-out you desire, try GPRT2 or GPRINT.
Important Note! Do not press (BREAK) while GPRT3 is executing.

Examples

When TRSDOS Ready is displayed, type:
GPRT3

or when the BAISCG READY prompt is displayed, type:
SYSTEM"GPRT3"

or
18® SYSTEM"GPRT3"

GROFF
Turns Graphics Display OFF

GROFF turns the Graphics Screen OFF. GROFF is different from GCLS since GROFF simply removes the Graphics
display without erasing the contents of graphic memory. GCLS completely clears graphics memory by writing zeroes i
(OFF) to every bit in memory.

Examples
When TRSDOS Ready is displayed, type:
GROFF
or when the BASICG READY prompt is displayed, type:

SYSTEM"GROFF" (ENTER
or
12@ SYSTEM"GROFF"

48

Graphics Utilities

GRON
Turns Graphics Display ON

GRON turns the Graphics Screen ON.

Examples
When TRSDOS Ready is displayed, type:
GRON
or when the BASICG READY prompt is displayed, type:

SYSTEM"GRON" (ENTER
or
100 SYSTEM"GRON"

GSAVE
Saves Graphics Memory to Diskette

Note: There cannot be spaces within a file specification. TRSDOS terminates the file specification at the first space.

With GSAVE, the contents in graphics memory is saved under a specified filename which follows the standard
TRSDOS format. To load the file back into memory, use GLOAD.

Examples
When TRSDOS Ready is displayed, type:

GSAVE PROGRAM/DAT.PASSWORD:2
or when the BASICG READY prompt is displayed, type:

SYSTEM"GSAVE PROGRAM" (ENTER)
or
1@ SYSTEM"GSAVE PROGRAM"

49

Model 4 Computer Graphics

Graphic Utilities Source Code Listings

00001
ogooz
gooo3
00004
oooos
0000é
oaaaz
0ooos
oooo9
ooo1o
00011
00012
00013
00014
0oo1s
00016
goo17
00018
00019
00020
00021
0oozz
00023
0oDzs4
00025
0oDz2s
oooz?
opozse
oooz9
00030
00031
00032
00ao33
00034
00035
0003s
0oo37
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
oooso
00051
0o0sz
000s3
00054
00ass
0o0sée

3 GLOAD -- Save graphics display to disk
PSECT 2600H iMode! 4 QOverlay area
PRINT SHORT ; NOMAC
H Macros
TRSDOS: MACRO #1
LD A%l
RST 28H
ENDOM
H TRSDOS SVC Equates
aFSPEC: EQU 78 iTest a tilespec
adOPEN: EQU S9 iOpen an existing tile
adREAD: EQU &7 iRead a record
dCLOSE: EQU &0 iClose a tile
JdERROR: EQU 26 iDisplay an error message
dDSPLY: EQU 10 iDisplay a message
; Port Equates
X: EQU 80H
Yt EQU 81H
DATA: EQU 82H
STATUS: EQU B83H
H Main Program
GLOAD: PUSH HL iSave pointer from command |ine
LD A,10H
ouT (238),A iTurn on CRTC ports
LD BC,1088H iLoad 16 Regs and point to control port
LD HL>CRTC+15S iLoad backuwards
H This code programs the CRTC Chip tor 80 x 24 screen
H Only required for Model 11l Graphics Boards
FDIV: ouT (C),B iSelect Data Register in CRTC
LD A, (HL) iGet the data
ouT (137),A iStore that in the CRTC
DEC HL iMove to previous entry
DJNZ FDIV iDecrement counter
LD HL,FCB iPoint at the FCB
LD (HL),00H iZera the butfter
LD DE,HL iBuild destination pointer
INC DE iCoapy tirst byte to second position
LD BC,32
LDIR
POP HL
LD A,0DH
CP (HL)

50

000s?
ooosa
ooose
000&0
00041
0o0&2
000&3
000&4
0D0&S
000&&
00D&7
0o0&se
00o&9
0oavo
ooo71
0oo7z
00073
00074
00avs
Qoo7s
ooa7?
ooovs
00079
oooao
ooosetl
oooez
ooaoe3
00084
goass
0oosé
gooa?
oooses
goos9
00090
00091
00092
0oa93
0oo94
00095
00096
ooae?
ooo9s
00099
00100
co101
oo102
00103
00104
00105
00106
go107
00108
00109
00110
00111
00112
00113
00114
00115
00116

NXTREC:

NGRPH :

EGRPH:

EXIT:

ERROR:

JR
LD
TRSDOS

Error

LD
TRSDOS
JR

Z,;ERROR
DE,FCB
aFSPEC
NZ ,BOMB

HL »BUFFER
DE,FCB
B0

S0PEN
NZ,BOMB

A,0B3H
(STATUS) ;A
A

(X)A
(Y)sA
E>A

D,80
B,75

DE
DE,FCB
JdREAD

DE
NZ,BOMB
HL »BUFFER
CsB

B0

A, (HL)
(DATA) A
HL

E

ASE

D

NZ ,EGRPH
A

E.A

(X) A

A, (YPOS)
A
(YPOS) A
(Y)>A
NGRPH
B»C
NXTREC

DE,FCB
dCLOSE
A,OFCH
(STATUS) A
A (EFLAG)
L.A

H,0

H

exits

HL » PARM
abDSPLY
EXIT

Graphics Utilities

iMove tilspec to FCB and do a syntax check

iOpen tile if it exists, else create

istatus = inc X atter write

iinit X & Y to zero

icounter for X values
i80 X values
i75 disk records tor entire screen

iRead a recard from disk

12546 bytes per record

iSame row?

iNext row. Set X to zero

iGo get next graphics byte

iGo read next disk record

iStatus = graphics ottty no waits, no

iReturn to TRSDOS or BASIC

iComplain

one

incs.

51

00117
oo11s8
00119
00120
go121
00122
00123
00124
00125
00126
00127
oo128
00129
00130
00131
00132

BOMB :

PARM:
EFLAG:
YPOS:
FCB:
BUFFER:

CRTC:

LD
OR
LD
TRSDOS
JR

DEFM
DEFB
DEFB
DEFS
DEFS

DEFB

END

Model 4 Computer Graphics

(EFLAG) A

OcOoH

CyA

dERROR iDisplay error message
EXIT

'Filespec required™’
8]

0

32

256

9%.80,85,8,25,4,24,0,9,0,0,0,0,0,0

GLOAD

52

Graphics Utilities

ooooi i GSAVE -- Save graphics display to disk

goooz

pooo3 PSECT 24600H iMode!| 4 Overlay area

00004 PRINT SHORT ;NOMAC

pooos

0oooé i Macros

gooo7

gooose TRSDOS: MACRO #1

oooo9e LD A,#l

poo10 RST 28H

00011 ENDM

00012

gooi13 H TRSDOS SVC Egquates

00014

poo1s aFSPEC: EQU 78 iTest a tilespec

00016 dINIT: EQU 58 iOpen an existing files or create a new one
poo17? adWRITE: EQU 75 iWrite a record

poo1s JCLOSE: EQU &0 iClose a tile

00019 dERROR: EQU 26 iDisplay an error message
0oozo aDSPLY: EQU 10 iDisplay a message

poo21

0oo2z H Port Equates

00023

00024 Xt EQU 80H

00025 Y: EQU 81iH

000z2és DATA: EQU 82ZH

00027 STATUS: EQU 83H

oooze

pooz2e H Main Program

00030

00031 GSAVE: PUSH HL iSave pointer from command |ine
00032

00033 LD As10H

00034 ouT (2346) A iTurn on CRTC ports

0on3s LD BC,1088H iLoad 146 Regs and point to control port
00036 LD HL,CRTC+15 iLoad backwards

00037

ooo3s i This code programs the CRTC Chip for B0 x 24 screen
ooao39 H Only required for Mode! IIl Graphics Boards

00040

00041 FDIV: ouT (C)»,B iSelect Data Register in CRTC
00042 LD A, (HL) iGet the data

00043 ouT (137),A iStore that in the CRTC

00044 DEC HL iMove to previous entry

00045 DJNZ FDIV iDecrement counter

00046

00047 LD HL,FCB iPoint at the FCB

ooo48 LD (HL) ,00H iZero the butter

00049 LD DE ,HL iBuild destination pointer
gooso INC DE iCopy tirst byte to second position
pops1 LD BC,32

goasz2 LDIR

goos3

pD00S4 POP HL

gooass LD A,00H

000Sé ce (HL)

0oas? JR Z,ERROR

pooss LD DE,FCB

0o0se TRSDOS aFSPEC iMove tilspec to FCB and do a syntax check
000&0 JR NZ ,BOMB

53

00061
0oos2
00063
00044
000é&5
000&6
000&7
0ooés
00069
ooovao
00071
00072
goo73
00074
00075
0007s
poo7?
ooove
0oove
oooso
ooos1
oposez
gooe3
oooes
gooses
afsfa]=ry
goas?
ooose
ogose9e
aoo<o
ooo91
ooo9z
00093
00094
aoo9s
00096
00097
gooee
ooaw9
00100
00101
00102
00103
00104
oo10s
00106
oo107
poios
00109
00110
00111
00112
00113
00114
00115
00114
00117
oo118
00119
00120

NXTREC:

NGRPH:

EGRPH:

EXIT:

ERROR:

BOMB:

Error

LD
TRSDOS
JR

Model 4 Computer Graphics

HL ,BUFFER
DE,FCB
8,0

3INIT
NZ,BOMB

A;D0E3H
(STATUS) ;A
A

(X) A
(Y))A
EsA

D,80
B,75

HL ;BUFFER
c,B

B,0

A (DATA)
(HL) »A
HL

E

ASE

D
NZ,EGRPH
A

E>A
(X)sA

A, (YPOS)
A
(YPOS) A
(Y)sA
NGRPH

DE
DE,FCB
JWRITE
DE

NZ ,BOMB
B,C
NXTREC

DE,FCB
aCLOSE
A,0OFCH
(STATUS) A
A, (EFLAG)
LA

H,D

A

exits

HL ; PARM
aDSPLY
EXIT

(EFLAG) ;A
0COH
C,A

iOpen tile

istatus =

it it exists:

inc X atter

iinit X & Y to zero

icounter

tor X values

;80 X values

375 disk

1256 bytes

per record

read

records for entire screen

iGet next graphics byte

7 and put

iSame row?

iNext row.

in butter

Set X to zero

;Go get next graphics byte

iWrite a record to disk

iGo till

;Status = graphics ott,

butter

tor

iTest Error byte
;Return to TRSDOS or BASIC

iComplain

next record

no waits:

no

else create one

incs.

54

Graphics Utilities

00121 TRSDOS QJERROR iDisplay error message
po122 JR EXIT

00123

00124 PARM: DEFM 'Filespec required™’

00125 EFLAG: DEFB 0]

00126 YPOS: DEFB 0

00127 FCB: DEFS 32

00128 BUFFER: DEFS 2546

00129

00130 CRTC: DEFB 9%,80,85,8,25,4,24,0,9,0,0,0,0,0,0
00131
00132 END GSAVE

35

oooo1
goooz
0ooo3
oooos
oooos
ooooé
oooa?
oooos
oooo9
ooo1o
goo11
00012
00013
00014
0001S
00016
00017
goois
a0019
goozo
00021
00022
gopz3
00024
0oo2s
Dogzés
ooozz
0oozs
gooze
0oao3o
00031
00a3z
00033
00034
0oo3s
00036
ooo37
oao3s
00039
00040
00041

i GRON =-- Tu

TRSDOS :

STATUS:

GRON:

FDIV:

CRTC:

PSECT
PRINT

Macro

MACRO
LD
RST
ENDM

Port
EQU
Main

LD
ouT
LD
LD

This
Only

ouT

ouT
DEC
DJUNZ

LD
ouT
XOR
LD
RET

DEFB

END

Model 4 Computer Graphics

rn on graphics display with waits on
24600H iMode! 4 Overlay area
SHORT ;NOMAC
H
#1
As#il
28H
Equates
83H
Program
A,10H
(236) A iTurn on CRTC ports
BC,1088H iLoad 16 Regs and point tao control
HL;CRTC+15 iLoad backwards
code programs the CRTC Chip tor BO x 24 screen

required for Mode!l [I]l Graphics Boards

(C),B iSelect Data Register in CRTC
As(HL) iGet the data

(137),A iStore that in the CRTC

HL iMove to previous entry

FDIV iDecrement counter

A, 0OFFH

(STATUS) A

A

HL»0

iReturn to TRSDOS ar BASIC
9%,80,85,8,25,4,24,0,9,0,0,0,0,0,0

GRON

POrt

56

00001
goooz
oooo3
oooos
0ooos
oooos
gooaz
oooos
oooo9
oooio
0oo11
ooo1z
0oo13
00014
00015
0oo1s
0oo17
gooie
oooie
goozo
0oo21
0oo2z2
ooo23
00024
ooozs
00D26
oooz7
ooozs
gooz9
00030
00031
0oo3z
00033
00034
0oo3s
00034
00037
00038
00039
ooosn
00041
00042
00043
00044
00045
00046
00047
oooss
00049
oooso
00os1
0oos2
0oos3
000S4
0o0ss
0oosée
0oos?
gooss
00oose
000&0

i GPRINT --

PSECT 2600H

PRINT SHORT ;NOMAC
H Macros
TRSDOS: MACRO #1

LD A#il

RST 28H

ENDOM

H TRSDOS SVC Egquates

Graphics Utilities

Print graphics screen to graphics printer

iMode!| 4 Overlay area

adPRT: EQU -3 iPrint a character on the printer
aPRINT: EQU 14 iPrint @ |line on the printer
dFLAGS: EQU 101 iPoint to system control +flags
i Port Equates
X: EQU BOH
Yt EQU B81H
DATA: EQU B82H
STATUS: EQU 83H
i Main Program
GPRINT: LD A,10H
ouT (234) 5A iTurn on CRTC ports
LD BC,15
LD HL;CRTC
3 This code programs the CRTC Chip tor B0 x 24 screen
H Only required for Madel Il Graphics Boards
FDIV: LD A,B iProgram CRTC chip for B0 by 24
ouT (138),A
LD As (HL)
ouTt (137),A
INC HL
INC B
LD AB
CP C
JR NZ,FDIV
LD A, 0DBH iOutput a Control byte to cause
ouT (STATUS) sA i Y to automatically dec. on a read
cAaLL INITBF iZero print bufter
XOR A iSet A to O
ouT (X),A ilnitialize the X position
LD (BPOS) s A H 0 ¥ bit position
LD (XLOC) »A H o ¥ ¥ |gcation counter
H Set the printer to start graphics mode
LD C,12H iBegin Graphics mode
TRSDOS aPRT iOutput Character
JP NZ ;BOMB iPrinter Not Ready

57

ooos1
000s&2
000&3
000&4
000&5
000&s
000&7
000&s
Doos?
ooovao
0oo71
0aavz
0oo73
oooza
0oo7s
00074
0oa77
ooove
ooo79
gooso
ooos1
gogez
ooos3
oooss
0ooss
0ooss
ooos?
goaes
ooos9
0oo<0
00091
00092
00093
00094
00095
000946
0ooev
gooes
0Do99
00100
00101
00102
oo103
00104
oo1os
00106
00107
goio8
00109
00110
00111
oo112
00113
00114
00115
00114
00117
00118
00119
00120

FDIV1:

COLUMN:

DECJ:

PAST :

SETO:

PRNDRS:

Model 4 Computer Graphics

Turn ott international character set translatian
TRSDOS aFLAGS
LD As(1Y+8) iGet IFLAGS
LD (OLD) A iSave a copy ot the current settings
RES &6:(1Y+8) iTurn ott bit 6 (Int!l. Translation)
LD IX,BUFFER ipoint IX at the printer butter
LD B,240 igo through a whole column of bytes
LD A:B iPut value in A and decrement
DEC A i so0 it can be put out as
ouT (Y) A i the Y position
LD HL »MASK iPoint at character mask
IN A, (DATA) yinput a graphics byte
AND (HL) ichop oft all but proper bit
CALL PC,SETO iit result is odd parity set bit O
i otherwise bit A is O
LD HL ,BPOS ipoint HL at the bit position
PUSH BC isave register B (for DJNZ loop)
LD B, (HL) iget count
INC B iincrement (in case it is 0)
DEC B imove bit lett BPOS number ot times
JR Z,PAST iit dones move on...
RLC A imove bit lett one position
JR DECJ irepeat |oaop
POP BC iget |oop counter back
OR (1Xx) imerge A with byte ot printer bufter
LD (IX)A iput merged result in buttfer
INC IX iincrement butter pointer
DJNZ COLUMN icantinue loop
LD A7 iSee it BPOS has gotten to 8.
INC (HL) i It it has (printer uses 7 bits)
CP (HL) ; print the butfer and reset
CALL Z ,PRNDRS ; BPOS to O
LD HL »MASK iAtter getting a vertical row ot bits
RRC (HL) i rotate the mask right one position
LD A,B80H iCheck to see it its back to
CP (HL) i it’s original value, if not
JR NZ,FDIV1 i a0 get another row ot bits
LD A, (XLOC) ilt sos get X pos (to increment it)
CP 79 iCheck to see it we are at the end...
JP Z,BYE
INC A iotherwise increment the X counter
LD (XLOC) »A ijand store it back
ouT (X)>A ialso update the port value
JR FDIV1 inow 90 get another row ot bits
LD Ayl iset A to binary 0000 0001
RET i and return
This routine edits the print buffer to remove trailing blanks

and then sends the data

HL »BUFFER+239

D,00H
B,239
A, 80H

to the printer

iSet up the

iPrint terminataor
iStart testing

iTest against nothing

Graphics Utilities

00121 CLEAN: CP (HL) iAnything there?

00122 JR NZ,STOP iFound something to print

00123 LD (HL) D iThen get rid ot it

00124 DEC HL

00125 DJNZ CLEAN iShorten the |ine as much as possible
00126 STOP: LD HL ;BUFFER iPoint to the start of the text
00127 TRSDOS Q@PRINT iPrint the contents ot BUFFER and do a C/R
poi128 XOR A iclear A

po129 LD (BPOS) »A ireset bit position counter

00130

00131 H lnitialize the Printer Butter

00132

00133 INITBF: LD HL , BUFFER iPoint at the bufter

00134 LD (HL) »80H iFill the butter with x’80°

00135 LD DE sHL jBuild destination pointer

00136 INC DE ;Copy tirst byte to second position
00137 LD BC,239 iZero 240 bytes

00138 LDIR

00139 RET

p0140

00141 BYE: CALL PRNDRS

00142 LD C,1EH iEnd Graphics Print Mode

00143 TRSDOS aFRT

00144

00145 BOMB : LD A,0OFCH iStatus = graphics ott, no waits: no incs
00146 out (STATUS) , A

00147

00148 TRSDOS QdFLAGS iPoint to system flags again

00149 LO A,(0OLD) iGet o!d contents of IFLAGS

00150 LD (1Y+8) A iSet things back the way they uere
00151

00152 LD HL 0 iZero Return Code

00153 RET iReturn to TRSDOS ar BASIC

00154

0o01ssS

001sé MASK : DEFB 80H iMask to use in extracting bits
00157 BUFFER: DEFS 240 iPrinter data bufter

poisa DEFB ODH iTerminator for Print Line

00159 BPQOS: DEFB 0 iBit position in printer butter
00160 XLOC: DEFB o] iCurrent X |pcatian value

00161 OLD: DEFB 0 i0ld contents of IFLAGS

00162

00143 CRTC: DEFB 99.80.85,8,25,4,24,24,0,9,0,0,0:0,0,0

001464

001465 END GPRINT

0ooo1
pooaoz
oooo3
Doooé
0ooos
pooos
0ooo7
gooos
oooo9
00010
goo11
0po12
00013
00014
ooo1s
goo1s
ooD17
ooois
00019
oaozo
gooz21
0poozz
oooz3
00024
0Dozs
00026
opoz?
goozs
oooz9
00030
00031
00032
00033
00034
0003s
D003s&
00037
0oo3s
ooo39
00040
00041
0004z
00043
00044
00045
00046
00047
ooos4s
00049
0o0so
0oos1
0opsz
0oos3
000S4
0aoss
00oss
0oas?
oooss
000s9
00040

i GCLS -- Clear graphics screen
PSECT 2600H iModel &4 Overlay area
PRINT SHORT ;NOMAC
i Macros
TRSD0S: MACRO #1
LD A #l
RST 28H
ENDM
H Port Equates
Xt EQU 80H
Y: EQU 81H
DATA: EQU 82H
STATUS: EQU 83H
INCY: EQU 70H
INCXY: EQU 30H
i Main Program
GCLS: LD A,10H
ouT (236) A iTurn on CRTC ports
LD BC,1088H iLoad 146 Regs and point to control port
LD HL,CRTC+15 iLoad backwards
H This code programs the CRTC Chip for B0 x 24 screen
H Only required for Model 11l Graphics Boards
FDIV: ouT (C),B iSelect Data Register in CRTC
LD A (HL) iGet the data
ouT (137),A iStore that in the CRTC
DEC HL iMove to previous entry
DJNZ FDIV iDecrement counter
LD A INCY iSet graphics status:
ouT (STATUS) s A i Graphics ott, waits off, inc Y
XOR A
ouT (X)sA iSet X & Y address to O
ouT (Y) A
LD B,80 i80 X addresses
QUTER: LD CsB
LD B,239 i239 Y addresses. 240th done atter loop.
INNER: OUT (DATA) ;A iZero graphics memory
DJUNZ INNER iGo clear next Y
LD A INCXY iSet status to inc X & Y atter write
ouT (STATUS) »A
XOR A
ouT (DATA) A iand clear last (240th) Y address
ouT (Y),A iSet Y back to zerao
LD A INCY iReset status to inc Y only
ouT (STATUS) ;A
XOR A
LD B:C
DJUNZ OUTER iGo clear next X
LD A,0FCH iSet status: graphics oft, no waits, no
ouT (STATUS) ;A

Model 4 Computer Graphics

incs

00061
00042
00043
0D0&4
000&S
0DD&&
ooos7
00pss

CRTC:

XOR
RET
DEFB

END

A
HL 0

Graphics Utilities

iReturn to BASIC or TRSDOS

9%9.,80,85,8,25,4,24,24,0,9,0,0,0,0,0,0

GCLS

61

Model 4 Computer Graphics

00001 i GROFF == Turn graphics display off with waits otf
0000z

gooo3 PSECT 2600H iMode! 4 Overlay area
00004 PRINT SHORT »NOMAC

pooos

oooos H Macros

goooz

oooos TRSDOS: MACRO #1

pooae LD A,#1

goo1ao RST 28H

00011 ENDM

ooo12

o0poo13 H Port Equates

00014

0ooi1s STATUS: EQU 83H

00016

poo17 H Main Program

oooise

0oo19 GROFF: LD A,10H

goozo ouT (236) 5A iTurn an CRTC parts
opooz21 LD BC,1088H iLoad 146 Regs and point to control port
0ooz2 LD HLCRTC+15S iLoad backuards

00023

00024 i This code programs the CRTC Chip for 80 x 24 screen
0oo2s H Only required tor Mode!l 11l Graphics Boards
0o02&

oooz7 FDIV: ouT (C),B iSelect Data Register in CRTC
goozs LD A, (HL) iGet the data

oopze ouT (137),A ;Store that in the CRTC
00030 DEC HL iMove to previous entry
00031 DJNZ FDIV iDecrement counter
00032

00033 LD A,0FCH

00034 ouT (STATUS) »A

0o03s XOR A

00036 LD HL 0

oon37 RET iReturn to TRSDOS or BASIC
poo3s

00039 CRTC: DEFB 99,80,85:8,25:4,24,0,9,0:0,0,0,0:0
00040

Qo041 END GROFF

62

oooo1
goooz
oooo3
00004
0ooos
0o00s
oooaz
oooos
gooa?
oooi1o
0oo11
ooo1z2
ooo13
00014
0oo1s
0oo1s
ooo17
gooise
00019
opozo
oooz21
ooozz
opooz3
00024
0oozs
00026
goozz
ooozs
oooze
00030
00031
0oo32
ooo33
00034
00035
00034
0oo37
Doo3s
00039
0oos0
00041
00042
00043
00044
00045
00046
00047
ooo4s
00049
0o00os0o
00051
00052
000S3
00D0S4
000ss
000Ss
0oos?
ooosse
000s9
000&0

Graphics Utilities

i GPRTZ2 -- Print graphics X horizantal
PSECT 2600H iMode! 4 QOverlay area
PRINT SHORT ;NOMAC
H Macros
TRSDOS: MACRO #1
LD A #l
RST 28H
ENDM
i TRSDOS SVC Equates
aPRT: EQU & iPrint a character on the printer
dPRINT: EQU 14 iPrint a line aon the printer
adFLAGS: EQU 101 iPoint to system control tlags
H Port Equates
X: EQU 80H
Y EQU 81H
DATA: EQU 82ZH
STATUS: EQU 83H
3 Main Program
GPRT2: LD A,10H
ouT (236) A iTurn on CRTC ports
LD BC,1088H iLoad 16 Regs and point to control port
LD HL ,CRTC+15 iLoad backwards
H This code programs the CRTC Chip tor B0 x 24 screen
H Only required for Model Il Graphics Boards
FDIV: ouT (C)»sB iSelect Data Register in CRTC
LD Ay (HL) iGet the data
ouT (137),A iStore that in the CRTC
DEC HL iMove to previous entry
DJNZ FDIV iDecrement counter

Set the printer to start graphics mode

LD C,12H iBegin Graphics mode
TRSDOS QaPRT iOutput Character
JR NZ ;BOMB iPrinter Not Ready

Turn ott international character set translation

TRSDOS QFLAGS

LD A,(1Y+8) iGet IFLAGS
LD (OLD) A ;Save a copy of the current settings
RES &:(1Y+8) iTurn ottt bit & (Intl. Transliation)

Open Video Memory

LD c,0 iGraphics Y address
LD AO0E3H iOpen RAM with video waits
ouT (STATUS) » A

63

00061
000&2
0D0&3
000&4
000&s
000s&&
0oo&7
000&s
0oosw
ooaovo
o0oo71
ooo7z
00073
00074
ooo7s
000746
0oo77
ooo7s
ooove
ooosao
ooos1

gooez
oooa3

ABAEe

gooas
oooaz
gooas
goos9
0oo<o
0oo91
ooo92
00093
00094
0009S
00096
ooo97
oooes
ooo99
oo100
00101
gpio2
00103
00104
0010s
00106
ooio7
noios
00109
00110
0o111
00112
00113
00114
00115
a011é
00117
oo118
00119
00120

NEWLN:

NEWRW :

BYTE1:

BIT:

OFF :

DONE :

BOMB:

Initialize the

LD

CALL
JR
JR

CALL

LD
TRSDOS

LD
ouT

TRSDOS
LD
LD

LD

Model 4 Computer Graphics

BC

HL ;BUFFER
(HL) ,80H
DE,HL

DE

BC,&39

BC
Ds1

AC

(Y)sA

c

HL ;BUFFER
A

(X)A
B,80

BC
A, (DATA)

£’ 8oH
AsC

E
Z,0FF
AsD
(HL)
(HL) »A
HL

E
NZ,BIT
BYTE1
BC

A,240

c

Z : DONE
D
P,NEWRW

PRINT
NZ ,BOMB
NEWLN
PRINT

C,1EH
aPRT

A,OFCH
(STATUS) A

dFLAGS
A, (OLD)
(1Y+8).,A

HL,0

Printer Butter

;Save BC
iPoint at the buffer
sFill the butter with x’80°
iBuild destination pointer
;Copy tirst byte to second position
iZerao 440 bytes

iRestore BC

iBit in but to set

iUpdate Y address

iRestart X address
iGet B0 graphics bytes
iSave Y & loop counter

H khics b i
iBaye,9tarhiny byte ip C

iSet bit in butter
iNext bufter byte
iNext bit

iLast Y address?

iNext bit in butfter

iPrint butter
iAn error occurred.

iEnd Graphics Print Mode
iWe do not care it this one tails.

iStatus = graphics otft, no waits, no
iPoint to system flags again

iGet old contents ot IFLAGS

iSet things back the way they were

iZero Return Code

incs

Graphics Utilities

00121 RET iReturn to TRSDOS or BASIC
00122

00123 PRINT: PUSH BC

00124 LD HL »BUFFER+&3% iPoint to the end ot the buffer
00125 LD D,0DH iKey on the terminataor

001246 LD BC, 440 iSet counter

po127 PFDIV: LD A, (HL) iLook at a byte

00128 CcP 80H ils it a nothing?

00129 JR NZ,STOP iThen stop

00130 DEC BC iDecrement counter

00131 DEC HL iDecrement pointer

00132 LD AB iSee it we are done

00133 OR C iWel 1?

00134 JR NZ,PFDIV iLoop tor more

00135 STOP: INC HL iMove pointer back ane

00136 . LD (HL) ,ODH iLoad a terminator atter last valid byte
00137 LD HL ; BUFFER iPoint at the text to be printed
00138 TRSDOS aPRINT iDisplay it

00139 POP BC

00140 RET iDones exit

00141

00142 CRTC: DEFB %%.80,85,8,25,4,24,24,0,9,0,0,0,0,0,0
00143

00144 oLD: DEFB s} i0ld contents ot IFLAGS
00145 BUFFER: DEFS 640

00146 DEFB 00H iCarriage return

00147

p0148 END GPRT2

65

00001
ooooz
oooon3
oooos
oooos
0ooos
gooo?
0oooe
oooa9
0ooio
00011
goo1z2
0oo13
00014
0oo1s
00016
00017
ooo1s
goo19
0oozo
oooz1
0002z
0ooz3
gooz2s
goozs
ooozs
oogz?
ooozs
0ooz29
0oo30
00031
0oo3z
00033
00034
0oo3s
00D3s
00037
ooo3s
00039
00040
00041
Qo042
00043
00044
00045
00046
00047
oooss
00049
0o0s0o
ooos1t
ooos2
ooos3
000s4
0ooss
000sé
0oos?
ooosse
ooose
000&0

Model 4 Computer Graphics

i GPRT3 -- Print graphics X horizontal double Y axis
PSECT 2600H iMode! 4 Overlay area
PRINT SHORT ;NOMAC
H Macraos
TRSDOS: MACRO #1
LD Ar#l
RST 28H
ENDM
H TRSDOS SVC Equates
dPRT: EQU) iPrint a character on the printer
dPRINT: EQU 14 iPrint a line on the printer
aFLAGS: EQU 101 iPoint to system control +lags
H Port Equates
Xt EQU 80H
Y: EQU 81H
DATA: EQU B2H
STATUS: EQU B83H
H Main Program
GPRT3: LD Ay10H
our (234) A iTurn on CRTC ports
LD BC,1088H iLoad 16 Regs and point to control
LD HL,CRTC+15 iLoad backwards
3 This code programs the CRTC Chip for 80 x 24 screen
H Only required tor Model 11l Graphics Boards
FDIV: ouT (C),B8 iSelect Data Register in CRTC
LD A (HL) iGet the data
ouT (137):A iStore that in the CRTC
DEC HL iMove to previous entry
DJUNZ FDIV iDecrement counter

Set the printer to start graphics mode

LD Ci12H

TRSO0S aPRT

JR NZ ,80MB

Turn ott international
TRSDOS QFLAGS

LD A;(1Y+8)

LD (OLD) A

RES &:,(1Y+8)

Open Video Memory

LD Cs0
LD A,0E3H
out (STATUS) ;A

character

iBegin Graphics mode
iOutput Character
iPrinter Not Ready

set translation

iGet IFLAGS

POrt

iSave a copy of the current settings

iTurn aff bit & (Intl.

iGraphics Y address
iOpen RAM with video waits

Translatian)

00061
000&2
000643
000&4
000&S
000&&
000s&7
00048
000&%9
00070
00071
0007z
ooo73
00074
0oo7s
00076
ooo77
ooo7s
00079
oooeo
gaooel
ooosz
oooa3
oooss
oooas
oooss
oooa?
poones
ooose9
0oo<0
00091
ooo92
00093
00094
0oo9s
00096
0oQa97
goo9s
oooee
goioo
0o101
00102
00103
go104
oo10s
00106
00107
ooios
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
go1zo

NEWLN:

NEWRW :

NEWR1 :

BYTE:
BYTEL:

BIT:

OFF :

Initialize the

D,3

BC

DE

HL ;BUFFER
(HL) ,80H
DEHL

DE

BC, 639

DE
BC

A,C

(Y),A
A,40H

D

Z,NEWR1

C

HL »BUFFER
A

(X)sA
8,80
Asd

D
NZ,BYTE
D&

BC

A, (DATA)
CHA
E,80H
A,C

E
2,0FF
A,D
(HL)
(HL) »A
HL

E
NZ,BIT
BYTE1
BC

A,240

C

Z ,DONE
D

D
Z,ENDRW
P yNEWRW
A, 7FH

D

DA

NZ ;NEWRW
D,3
ENDR2

Graphics Utilities

Printer Bufter

iBit(s) in buf to set

iSave BC

iPoint at the buffer

iFill the butter with x’80°
iBuild destination pointer

iCopy tirst byte to second position
iZero &40 bytes

iRestore BC

iUpdate Y address

ilt printing row secand time
H Move to next row

iRestart X address
iGet B0 graphics bytes

iSave Y & loop counter

iSave graphics byte in C
iGet bits |left to right

iSet bit in butter
iNext butter byte
iNext bit

iLast Y address?

iNext bit in butter

67

00121
00122
00123
00124
00125
00126
00127
00128
go129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
0014é
00147
00148
001479
001s0
00151
00152
001S3
00154
001SS
00156
g01s7
0D1S8
00159
00140
00141
00142
00143
00164
00145
00164
00147
0D1é8

ENDRW :
ENDR2:

DONE :

BOMB :

PRINT:

PFDIV:

STOP:

CRTC:

OLD:
BUFFER:

LD
TRSDOS

LD
ouTt

TRSDOS

LD
LD

DEFB
DEFB
DEFS
DEFB

END

Model 4 Computer Graphics

A,0OFCH
(STATUS) - A

aFLAGS
A, (0OLD)
(IY+8) A

HL .0

BC

HL yBUFFER+639
D,0DH

BC, 440

A, (HL)
80H
NZ,STOP
BC

HL

A:B

C
NZ,PFDIV
HL

(HL) ,0DH
HL ,BUFFER
IPRINT

BC

iPrint butfer

iPrinter Error

iEnd Graphics Print Mode

iWe do not care

iStatus = graphics oft,

it this one fails.

no waitss; no incs

iPoint to system flags asain
iGet old cantents ot IFLAGS
iSet thines back the way they were

iZero Return Code
iReturn to TRSDOS or BASIC

iPoint to the end of the butftter
iKey on the terminator

iSet counter

iLook at a byte
it a nothing?

ils
iThen stap

iDecrement counter
iDecrement pointer

iSee it we are done
iWel 17
iLoop for more

iMove pointer back one

iLoad a terminator after

last valid byte

iPoint at the text to be printed

iDisplay it

iDones exit

99,80,85,8,25,4,24,24,0,%9,0,0,0,0,0,0

0
640
ODH

GPRT3

;0ld contents of IFLAGS

iCarriage return

68

Graphics Subroutine Library (FORTRAN)

4/ Graphics Subroutine Library (FORTRAN)

The Graphics Subroutine Library included on the Computer Graphics diskette lets you use the functions of TRS-80
Computer Graphics while programming in Model 4 FORTRAN (26-2219). This library (GRPLIB/REL) must be
linked to any FORTRAN program that accesses the Graphics Subroutines.

BASICG vs. the Graphics Subroutine Library

The Graphics Subroutine Library contains subroutines which provide the same capabilities as the Graphics commands
and functions in BASICG. The Graphics subroutines have basically the same names and parameters as the BASICG
commands. The major differences between the Library subroutines and the BASICG commands are:

® The BASICG command LINE has three corresponding library subroutines: LINE, LINEB, and LINEBF. LINEB
and LINEBF provide the functions of the BASICG command LINE with the parameters B and BF respectively.

® The BASICG command PAINT has two corresponding library subroutines: PAINT and PAINTT. PAINT is for
painting solid black or white, and PAINTT is for painting with tiling.

® The Library subroutines that correspond to BASICG commands that use (x,y) coordinates (except for VIEW) use
(x,y) coordinates that have been previously set. The subroutines used to set the coordinates are SETXY and
SETXYR.

Setting Points using SETXY and SETXYR

The coordinates specified by SETXY or SETXYR will be called the ‘‘current’” and **previous’" coordinates.
Subroutines that use one (x,y) coordinate pair use the *‘current’” coordinates and subroutines that use two (x,y) pairs
use both the “*current’” and the *‘previous’’ coordinates. Each call to SETXY or SETXYR sets the coordinates as
follows:

1. Assign the values of the *‘current’ (x,y) coordinates to the *‘previous’’ (x,y) coordinates, (discarding the old
‘‘previous’’ coordinates).

2. Assign new values for the *‘current’ (x,y) coordinates as specified by the arguments supplied. SETXY simply
sets the “‘current’’ coordinates to the values of its arguments. SETXYR adds the values of its arguments to the
*‘current’’ coordinates to obtain the new coordinates.

Initialization

Before any calls are made to Graphics, the Graphics library and board must be initialized. A special initialization
routine (GRPINI) is included in the library. A call to GRPINI must be made as the first access to the Graphics
library.

Example
001006 C SAMPLE INITIALIZATION
20150 DIMENSION V(30,30)
00200 CALL GRPINI (@)

69

Model 4 Computer Graphics

Linking
The Library (GRPLIB/REL) must be linked to any programs that access the Graphics Subroutines. You must use the

linker (L80) to generate the load module.

Example

L8o (ENTER

*SAMPLE: 1-N

*GRPHSAM ,GRPLIB-S/FORLIB-S,-U
*-E

This example links both the Graphics Library and the FORTRAN Subroutine Library to the relocatable file
GRPHSAM/REL. In this example, SAMPLE: 1-N is the file name, drive specification, and switch, respectively;
GRPHSAM, GRPLIB-S, FORLIB-S, and U are the names of the relocatable modules to be linked and their
respective switches. —E ends the routine and creates the executable program SAMPLE. The #’s in the example are
prompts for the user — not data to be entered.

Note: If there are unresolved external references, the FORTRAN Library may need to be scanned a second time.

Errors

If you enter incorrect parameters for any of the Graphics Subroutines, your screen will display:
GRAPHICS ERROR

and return program control to TRSDOS Ready. This is the only error message you'll get when executing the
Subroutines.

Important Note: Free memory is utilized by the Graphic Routine for temporary storage. Extreme care should be
exercised if your program accesses this memory.

Routines/Functions

Most of the FORTRAN Subroutines and functions described in this section have a corresponding command in the
Graphics BASIC Language Reference section of this manual.

70

Graphics Subroutine Library (FORTRAN)

FORTRAN Routines

Routine Action

CIRCLE Draws a circle, arc, semicircle, or ellipse.

CLS Clears the Graphics Screen.

GET Reads the contents of a rectangular pixel area into an array.

GPRINT Displays textual data on the Graphics Screen.

GRPINI Graphics initialization routine.

LINE Draws a line.

LINEB Draws a box.

LINEBF Draws a filled box.

LOCATE Sets the direction for displaying textual data on the
Graphics Screen.

PAINT Paints the screen in specified OFF/ON color.

PAINTT Paints the screen in a specified pattern.

PRESET Sets pixel OFF/ON.

PSET Sets pixel OFF/ON.

PUT Puts the stored array on the screen.

SCREEN Selects the screen.

SETXY Sets (x,y) coordinates (absolute).

SETXYR Sets (x,y) coordinates (relative).

VIEW Sets up a viewport where graphics is displayed.

Table 7

FORTRAN Functions

Function Action
POINT Reads a pixel's value at a specified coordinate.
FVIEW Reads a viewport's parameters.

Table 8

71

Model 4 Computer Graphics

CIRCLE
Draws a Circle, Arc, Semicircle, Point or Ellipse

CIRCLE draws a circle. By varying start, end, and aspect ratio, you can draw arcs, semicircles, or ellipses using
current X- and Y-coordinates as the centerpoint (set by SETXY or SETXYR).

If start and end are 0.0, a circle is drawn starting from the center right side of the circle. Note: In the CIRCLE
statement, end is read as 2 x Pl even though you have entered 0.0. If you enter 0.0 for aspect ratio, a symmetric
circle is drawn.

Example
CALL CIRCLE(100+1+2.0+0.0:0.0)
Sample Program

This example draws and paints a circle.

eoo10 C SAMPLE PROGRAM FOR CIRCLE

0020 LOGICAL COLOR,OPTION

20030 COLOR=1

o004 OPTION=0

00050 CALL GRPINI(OPTION)

00060 CALL CLS

00070 CALL SETXY(300:100)

20080 CALL CIRCLE(10@,COLOR2.0+0.2+2,0)
00090 CALL PAINT(COLOR sCOLOR)

00100 END

CLS
Clears Graphics Screen

Example
CALL CLS

Sample Program (see CIRCLE)

72

Graphics Subroutine Library (FORTRAN)

GET
Reads Contents of a Rectangular
Pixel Area into an Array

ol
i

GET reads the contents of a rectangular pixel area into an array for future use by PUT. The pixel area is a group of
pixels which are defined by the current x and y, and the previous X- and Y-coordinates specified by the SETXY
call. The first two bytes of array are set to the horizontal (X-axis) number of pixels in the pixel area; the second two
bytes are set to the vertical (Y-axis) number of pixels in the pixel area. The remainder of array represents the status
of each pixel (either ON or OFF) in the pixel area. The data is stored in a row-by-row format. The data is stored
eight pixels per byte and each row starts on a byte boundary.

Array Limits

When the array is defined, space is reserved in memory for each element of the array. The size of the array is
limited by the amount of memory available for use by your program — each real number in your storage array uses
four memory locations (bytes).

The array must be large enough to hold your graphic display and the rectangular area defined must include all the
points you want to store.

To determine the minimum array size:
1. Divide the number of X-axis pixels by 8 and round up to the next higher integer.
2. Multiply the result by the number of Y-axis pixels.
When counting the X-Y axis pixels, be sure to include the first and last pixel.
3. Add four to the total.

4. Divide by four (for real numbers) and two (for integers) rounding up to the next higher integer. (Note: If you're
using a LOGICAL array, the result of Step #3 above will produce the desired array size.)

When using arrays the position and size of the rectangular pixel area is determined by the current and previous (x,y)
coordinates.

|

Position: upper left comer = startpoint = (xl,yl)
lower left corner = endpoint = (x2,y2)

Size (in pixels): Width = x2—xI+1
length = y2—yl +1
Example
CALL GET(A,4000)

73

Model 4 Computer Graphics

Sample Program

This example draws a circle, saves the circle into an array, then restores the array to the graphics video.

o005@¢ C SAMPLE FOR GET AND PUT
001090 LOGICAL V(128) »ACTION
00150 ACTION=1
e0zZ00 CALL GRPINI(@)
00300 CALL CLS
02358 C DRAW A CIRCLE
eddae0 CALL SETXY(30.,3@)
00500 CALL CIRCLE(10+1+0.2,:0.0+0.0)
20855¢ C SET COORDINATES FOR GET ARRAY
00600 CALL SETXY(10.,10)
Q0700 CALL SETXY(4@.40)
0759 C STORE GRAPHICS INTO ARRAY WITH GET
00800 CALL GET(V,128)
00900 DD 1@ I=1,5000
01000 10 CONTINUE
0105¢ C CLEAR SCREEN AND RESTORE GRPH FROM ARRAY
21100 CALL CLS
1200 CALL SETXY(1104+110)
01300 CALL PUT(V,ACTION)
01400 DO 20 I=1,5000
01500 20 CONTINUE
01600 END
GPRINT

Write Text Characters to the Graphics Screen

GPRINT is used to write text characters to the Graphics Screen. This is the easiest way to display textual data on the
Graphics Screen. Characters are displayed starting at the current (x,y) coordinates and going in the direction specified
by the most recently executed LOCATE call. If no LOCATE call was executed prior to the GPRINT call, a direction
of 0 is assumed.

GPRINT will only print text characters (see the Model 4 Disk System Owner’s Manual). Each character displayed
in the 0 or 2 direction uses an 8 x 8 pixel grid: each character displayed in the | or 3 direction uses a 16 x 8 grid.
Executing this command will set the current (x,y) coordinates to the end of the last character that was displayed.

74

Graphics Subroutine Library (FORTRAN)

Displaying text in the direction 0 engages a wraparound feature. If the end of a line is reached, the display will be
continued on the next line. If the end of the screen is reached, the display will be continued at the beginning of the
screen without scrolling. If there is not enough room to display at least one character at the current (x,y) coordinates,
a GRAPHICS ERROR will result. When displaying text in other directions, an attempt to display text outside the
currently defined screen will cause a GRAPHICS ERROR to be given.

GRPINI
Graphics Initialization Routine

GRPINI is the graphics initialization routine. This function must be called before any other graphics calls are made
in FORTRAN.

Example
CALL GRPINI(1)

Sample Program (see CIRCLE)

LINE
Draws Line

LINE draws a line between the previous and current coordinates. These coordinates are set by the SETXY or
SETXYR subroutines.

Example
CALL LINE (1,-1)

75

Model 4 Computer Graphics

Sample Program
This example draws a diagonal line connected to a box. which is connected to a filled box.

dee1e C SAMPLE FOR LINE LINEB LINEBF

00020 LOGICAL COLOR
20030 COLOR=1
00040 CALL GRPINIC(®)
00350 CALL CLS
20060 CALL SETXY(1.:1)
o0a7@ CALL SETXY(21@.,80)
20080 CALL LINE(COLOR.,-1)
00292 CALL SETXY(42@.,1B60)
00100 C COORDINATES ARE NOW (210.:89Q) (420.,160)
00110 CALL LINEB(COLOR-1)
20120 CALL SETXY(639,239)
00130 C COORDINATES ARE NOW (420,160) (639,239)
00140 CALL LINEBF(COLOR)
o015 END
LINEB
Draws Box

LINEB is the same as LINE except LINEB draws a box between the two sets of coordinates set by the SETXY or
SETXYR subroutines.

Example
CALL LINEB(1,-1)

Line Program (see LINE)

76

Graphics Subroutine Library (FORTRAN)

LINEBF
Draws Painted Box

LINEBF is the same as LINEB except LINEBF fills the box (colors in the box) and the argument style is not used.

Example
CALL LINEBF (1)

Sample Program (see LINE)

LOCATE
Sets the Direction for Displaying Text
on the Graphics Screen

LOCATE sets the direction that GPRINT will use to display textual data. The allowable values for direction are:

0 - zero degree angle
I - 90 degree angle

2 - 180 degree angle
3 - 270 degree angle

Examples

CALL LOCATE (@)

This program line will cause characters to be displayed at the current (x,y) coordinates in normal left to right
orientation.

CALL LOCATE (1)

This program line will cause characters to be displayed at the current (x.y) coordinates in a vertical orientation going
from the top of the screen to the bottom of the screen.

CALL LOCATE (2)

This program line will cause characters to be displayed upside down starting at the right of the screen and going
towards the left.

Model 4 Computer Graphics

CALL LOCATE (3)
This program line will cause the characters to be displayed vertically starting at the lower portion of the screen going

towards the top of the screen.

PAINT
Paints Screen in Specified Color

PAINT paints the screen in the specified OFF/ON color (black or white). It uses the current X- and Y- coordinates
(see SETXY) as its startpoint.

Example
CALL PAINT(1,1)

Sample Program (see CIRCLE)

PAINTT
Paints Screen in Specified Pattern

PAINTT lets you paint a precisely defined pattern using a graphics technique called “‘tiling.” You can paint with
tiling by defining a multi-pixel grid in an array and then using that array as the paint pattern.

Example
CALL PAINTT (A1)

78

Graphics Subroutine Library (FORTRAN)

Sample Program

00100 C EXAMPLE FOR PAINT WITH TILE
00150 LOGICAL A:B+BORDER
00200 DIMENSION A(9)
00300 DIMENSION B(2)
#2350 C DEFINE TILE ARRAY HERE
00400 DATA A(1) s A(2)y A(3) / By X’'Bl17y X7d27/
20500 DATA A(4) JA(S) »A(B) /X247 X718 X718/
0600 DATA A(7))A(B) AL /K 247 X742 yX'81 7/
865¢ C DEFINE BACKGROUND ARRAY HERE
22700 DATA B(1):B(2)/14+0/
20800 CALL GRPINI(®)
00900 CALL CLS
01000 CALL SETXY(300.,100)
01100 CALL CIRCLE(15¢+1,0.0,2.0,02.0)
01200 BORDER=1
21300 CALL PAINTT(A,BORDER.B)
21400 END
PRESET

Sets Pixel ON/OFF

PRESET sets the pixel defined by the current (x,y) coordinates cither ON or OFF.

Example
CALL PRESET(@)

Sample Program

2100 C PRESET EXAMPLE

00200 LOGICAL COLOR

Vo300 COLOR=1

0400 CALL GRPINI(®)

Vo590 CALL CLS

@0Ge@ C SET PIXEL TO ON

00700 CALL SETHKY(300.129)

o08eQ CALL PRESET(COLOR)

0e90® C TEST PIXEL WHETHER ON OR OFF
Q1000 K=POINT(M)

21100 30 WRITE (3,35)K
@1200 35 FORMAT (*27,*PIXEL VALUE 1S57,14)
01300 END

79

Model 4 Computer Graphics

PSET
Sets Pixel ON/OFF

PSET sets the pixel defined by the current (x,y) coordinates either ON or OFF.
Example

CALL PSET(®@)

Sample Program

o100 C PSET EXAMPLE

20200 LOGICAL COLOR

0300 LOGICAL POINT

20400 COLOR=1

o500 CALL GRPINI(®)

20600 CALL CLS

8700 C SET PIXEL TO ON

0800 CALL SETXY(300,129)

00900 CALL PSET(COLOR)

01002 C TEST PIXEL WHETHER ON OR OFF
1100 K=POINT(M)

1200 WRITE (3,35)K

91320 35 FORMAT (*2', PIXEL VALUE IS’.,I14)
1409 END

PUT
Puts Stored Array onto Screen

PUT takes a rectangular pixel area that has been stored by GET and puts it on the screen at current x and y
coordinates set by calling SETXY.

80

Graphics Subroutine Library (FORTRAN)

Example
CALL PUT (V1)

Sample Program (see GET)

SCREEN
Selects Screen

SCREEN lets you select the proper screen.

Example
CALL SCREEN(®)

Sample Program

This example turns off the graphics display, draws a circle, then turns on the graphics display. The circle is then
visible.

20010 C EXAMPLE FOR SCREEN
0020 LOGICAL CMD

0040 CMD=1

20050 CALL GRPINI(®)
20060 CALL CLS

20070 CALL SCREEN(CMD)
20080 CALL SETXY(300:120)
20090 CALL CIRCLE(102:+1+0.0+0.0+0.0)
00100 CALL PAINT(1.1)
o110 DO 2@ I=1,100009
00120 20 CONTINUE

001302 CMD=9

00140 CALL SCREEN(CMD)
20150 END

81

Model 4 Computer Graphics

SETXY
Sets Coordinates

SETXY sets and holds both current and previous X- and Y- coordinates. When a new coordinate is given, it is
designated as the *‘current coordinate’” and the last coordinate is designated as the **previous coordinate.” If a new
coordinate is specified, the **previous coordinate’” is lost and the *‘current coordinate’’ becomes the *'previous
coordinate.”’

Example
CALL SETXY(100,100)

Sample Program (see LINE)

SETXYR
Sets Relative Coordinates

SETXYR sets the current (x,y) coordinates relative to the previously set (x,y) coordinates. For example. if the
“‘current’’ coordinates are (100,100), CALL SETXYR(10,10) will set the *‘current” coordinates to (110,110); the
*‘previous’’ coordinates will then be (100,100).

Example
CALL SETXYR(30,30)

Sample Program

eev1@ C DRAW TWO INTERSECTING CIRCLES

00020 CALL GRPINIC(1)

00030 CALL CLS

Qo040 CALL SETXY(100.,+100)

20050 CALL CIRCLE(S5@:+1+0.0:+0.0:0.0)

o060 C DRAW SECOND CIRCLE WITH CENTER 2@
o079 C PIXELS TO THE RIGHT OF FIRST CIRCLE
20080 CALL SETXYR(Z20,0)

e0090 CALL CIRCLE(S50:14+2.0:0.0+2.0)

00100 END

Graphics Subroutine Library (FORTRAN)

VIEW
Sets Viewport

VIEW draws viewports on your screen. Graphics is displayed only in the last defined viewport.

The upper-left corner of viewport is read as (0,0) (the “‘relative origin’’) when creating items inside the viewport.
All the other coordinates are read relative to this origin. However, the “*absolute coordinates™ of the viewport, as

they are actually defined on the Graphics Cartesian system, are retained in memory and can be read using VIEW as
a function.

Example
CALL VIEW(100,100,200,200,0+1)

Sample Program
oe100 C SAMPLE VIEW PROGRAM

Q0200 LOGICAL COLOR BORDER K
20300 INTEGER FUVIEMW

Q0400 CALL GRPINIC(1)

Ad500 CALL CLS

aecoe C SET UP VIEW PORT

00700 COLOR=@

20800 BORDER=1

@900 CALL VIEW(Z210.,80+420,16@¢,COLORBORDER)
21000 C DRAW MULTIPLE CIRCLES
01100 CALL SETXY(1@5.,40)

1200 DO 20 I1=10,15@:10

21300 CALL CIRCLE(I+»1+0.0,0.0:0)

o140 20 CONTINUE
1500 C DISPLAY VIEWPORT COORDINATES

21600 DO 40 I=1.4
21700 K=I-1

21800 J=FUIEW(K)
21900 WRITE (3:35)I.:J

22000 35 FORMAT (*2',*VIEW PORT COORDINATE ‘.14, IS AT':14)
02100 49 CONTINUE
22200 C PRINT EMPTY LINES

83

Model 4 Computer Graphics

02300 DO 6@ I=1.6
02400 WRITE (3:50)
02500 50 FORMAT (1H1)
02600 GO CONTINUE
02700 END

The following two descriptions are functions in the Graphics Subroutine Library and must be declared as LOGICAL
and INTEGER, respectively, in any routine that uses them.

Functions

POINT
Reads Pixel Value at Current Coordinates

POINT returns the OFF/ON pixel value at current x and y coordinate as specified by SETXY or SETXYR. If the
point is not in the current viewport, POINT returns — 1.

Example
K=POINT(M)

Sample Program (see PSET)

FVIEW
Reads Viewport’s Parameters

FVIEW returns the specified viewport parameter:

0 = returns the left X-coordinate

1 = returns the left Y-coordinate

2 = returns the right X-coordinate

3 = returns the right Y-coordinate
Example

I=FVIEW(®)

Sample Program (see VIEW)

Programming the Graphics Board

5/ Programming the Graphics Board

The Graphics Board provides 640 X 240 byte addressable pixels on a TRS-80 Model 4. The Graphics Board
contains 32K of screen RAM to store video data consisting of four 64K RAMs which are double accessed for 8
bytes of data. Regular alphanumeric data is stored in the static RAM on the Video Board. The Graphics Board uses
separate hardware to generate a 640 X 240 display, so only one screen may be displayed at a time. If the video is
switched from Text to Graphics Screen very rapidly, the Video display may lose horizontal/vertical synchronization.

/O port mapping is used to read and write data to the board. The Board is addressable at 80 — 83 Hex.
There are four internal registers which can be written to or read on the board. They are as follows:

1. X-Position — X-address (0 to 127) for data write only. (0 to 79 for display.)

2. Y-Position — Y-address (0 to 255) for data write only. (0 to 238 for display.)

3. Data — Graphics data in “*byte’’ form. Each byte turns on or off 8 consecutive horizontal dots.
4. Options — 8 flags which turn on or off the user programmable options (Write only).

The /O port mapping of the board is:

®) — X-Register Write. (80)

® x|l — Y-Register Write. (81)

® 2 — Video data read or write. (82)
® 13 — Options write. (83)

where x denotes the upper nibble of the I/O boundary as set by the DIP Switches. They are set by the factory at
80H.

The Graphics Board uses X-Y addressing to locate the start of a Graphics data byte. The upper-left of the screen
is (0,0) while the lower-right is (079,239). If the bit is a 1, the dot will be ON. For example, if you wanted to
turn on the 5th dot on the top row, the registers would contain: X POSITION =0, Y POSITION =0,

DATA =(00001000) = 08H. Note that in calculating points to plot, the Y-position is correct for a single dot. Only

the X-position must be corrected to compensate for the byte addressing. This can be accomplished in a simple
subroutine.

Line Drawing Options

There are two 8-bit counters which act as latches for the X- and Y-address. You may select, through the options
register, if they are to automatically count after a read or write to graphic memory. Also, the counters may increment
or decrement independently. These counters do not count to their respective endpoints and reset. Instead, they will
overflow past displayable video addresses. Therefore, the software should not allow the counters to go past 79 and
239. However, these extra memory locations may be used for data storage.

85

Model 4 Computer Graphics

Examples

The following are brief examples on how to use the Graphics Board.

Read the video byte at X=0, Y =0

XOR A iCLEAR A

ouT (BOH) »A SOUTPUT X ADDRESS
ouT (B1H) +A jOUTPUT ¥ ADDRESS
IN A (BZH) iREAD VIDEO BYTE

Draw a line from X=0,Y =0 to X=639, Y =0 using the hardware line drawing

LD B:79 iB HAS CHARACTER COUNT
LD As@B1H SOPTIONS: INCREMENT X AFTER WRITE
i10110001 Binary
ouT (B3H) :A
KOR A
ouT (BOH) »A 30UT X ADDRESS STARTING
ouT (B1H) sA iOUTPUT Y ADDRESS
LD As@FFH iLOAD A WITH ALL DOTS ON
LOOP ouT (B2H) »A iOUTPUT DOTS
DJNZ LOOP sOUTPUT NUMBER IN B REGISTER
Options Programming
No. Option Description
0 GRAPHICS/ALPHA" Turns graphics ON and OFF.
“1" turns graphics ON.
1 NOT USED
2 XREG DEC/INC* Selects whether X decrements or increments.
“1" selects decrement.
3 YREG DEC/INC* Selects whether Y decrements or increments.
“1" selects decrement.
4 X CLK RD" If address clocking is desired, a “0" clocks the X
address up or down AFTER a Read depending on
the status of BIT 2.
5 Y CLK RD* If address clocking is desired, a “0" clocks the Y
address up or down AFTER a Read depending on
the status of BIT 3.
6 X CLK WR* A “0" clocks AFTER a Write.
7 Y CLK WR* A 0" clocks AFTER a Write.

Table 9. Options Programming

86

Appendix A/ BASICG/Utilities Reference Summary

Appendix A/BASICG/Utilities
Reference Summary

Argument ranges are indicated below by special letters and words:

ar is a single-precision floating point number > 0.0 (to I+ 10*®),

b is an integer expression of either O or 1.

B specifies a box.

BF specifies a shaded box.

¢ is an integer expression of 0 or 1.

n is an integer expression from 0 to 2.

p is an integer expression from 0 to 3.

r is an integer expression from 0 to 639.

X is an integer expression from 0 to 639,

v is an integer expression from 0 to 239,

action is either AND, PSET, PRESET, OR, or XOR.
background is a string of either 0 or 1.

border is an integer expression of either 0 or 1.

end is an expression from —6.283185 to 6.283185.
start f029is an expression from —6.283185 to 6.283185.
switch is an integer expression of 0 or 1.

tiling is a string or an integer expression of 0 or 1.
type is an integer expression of 0 or 1.

CIRCLE(x,y)r,c,start,end,ar Draws a circle, ellipse, semicircle, arc, or point.

CIRCLE(1@2,100),25,1 CIRCLE(1SQ+15@) +4@+134+,.8
CIRCLE(102,100) ,100:PI1 +2%PI,5 CIRCLE(-50,-50),200

CLS Clears the Text Screen and video memory.
CLS SYSTEM"CLS"

CLR Clears the Graphics Screen.
CLR

GCLS Clears the Graphics Screen and memory.
GCLS SYSTEM"GCLS" 18¢ SYSTEM"GCLS"

GET(x1,y1)~(x2,y2),array name Reads the contents of a rectangular pixel area into an array.
GET(10+10)-(50+50) »V

GLOAD filename/ext.password:d Loads graphics memory.
GLOAD PROG SYSTEM"GLOAD PROG"

GLOCATE (x,y),direction Sets the Graphics Cursor
GLOCATE (320+120) 40

87

Model 4 Computer Graphics

GPRINT Dumps graphic display on the printer.
GPRINT SYSTEM"GPRINT" 12090 SYSTEM"GPRINT

GPRT2 Dumps graphic display on the printer without rotating 90 degrees.
GPRTZ S‘I'STEM"GPRTZ" 1@@ SYSTEM"GPRTEH

GPRT3 Dumps graphics display on the printer without rotating 90 degrees.
GPRT3 SYSTEM"GPRT3" 10@ SYSTEM"GPRT3"

GROFF Turns Graphics Display OFF.
GROFF SYSTEM"GROFF"

GRON Turns Graphics Display ON.
GRON SYSTEM"GRON"

GSAVE filenamel/ext.password:d Saves graphics memory.
GSAVE PROG SYSTEM"GSAVE PROG"

LINE(x1,yl)~(x2,y2),c,B or BF, style Draws a line/box.
LINE -(100:100) LINE(10@,1020)-(200:200) »14B:45
LINE(®@)-(100,100) +1+BF LINE(-200,-200)-(100,100)

PAINT (x,y),tiling,border,background Paints the screen.
PAINT(320,120) 1,1 PAINT(320.,1Z@),"DDDDD" +1
PAINT(320,120) 1A% 1
PAINT(320,120) yCHR$(®)+CHR$ (&HFF) +@ CHR$ (&HOD)
PAINT(32@,120) yCHR$(E)+CHR$(77)+CHR%(3)

&POINT(x,y) A function. Tests graphics point.
PRINT &POINT(320:120) IF &POINT(320,120)=1)THEN. ..
PRINT &POINT(320,120) +-1

PRESET (x,y),switch Sets pixel OFF or ON.
PRESET(100,1090) +0

PRINT #-3, item list Write text characters to the Graphics Screen.
PRINT #-3,"MONTHLY"

PSET (x,y),switch Sets pixel ON or OFF.
PSET(100,100) »1

PUT (xI,yl),array name,action Puts graphics from an array onto the screen.
PUT(100,100) A PSET PUT(10@:10@) »A+AND
PUT(AB) +B

SCREEN type Selects the screen.
SCREEN @

VIEW (xI,yl)—~(x2,y2),c,b Redefines the screen and creates a viewport.
VIEW(100,100)-(150,150) VIEW(10@,100)-(150,150) 40,1

&VIEW(p) A function. Returns viewport’s coordinates.
PRINT &R&VIEW(1)

88

Appendix B/ BASICG Error Codes and Messages

Appendix B/ BASIC Error Codes
and Messages

Code Number Message

NF 1 NEXT without FOR

A variable in a NEXT statement does not correspond to any previously
executed, unmatched FOR statement variable.

RG 3 Return without GOSUB

BASIC encountered a RETURN statement for which there is no
matching GOSUB statement.

FC 5 lllegal function call

A parameter that is out of range was passed to a math or string
function. An FC error may also occur as the result of:

a. A negative or unreasonably large subscript.
b. A negative or zero argument with LOG.
A negative argument to SQU.
d. A negative mantissa with a noninteger exponent.

e. A call to a USR function for which the starting address has not yet
been given.

f. An improper argument to MID$, LEFT$, RIGHTS, PEEK, POKE,
TAB, SPC, STRING$, SPACES$, INSTR, or ON...GOTO.

89

Model 4 Computer Graphics

oM 7 Out of memory

A program is too large, or has too many FOR loops or GOSUBs, too
many variables, or expressions that are too complicated.

BS 9 Subscript out of range

An array element was referenced either with a subscript that is outside
the dimensions of the array, or with the wrong number of subscripts.

/0 11 Division by zero

An expression includes division by zero, or the operation of involution
results in zero being raised to a negative power. BASIC supplies
machine infinity with the sign of the numerator as the result of the
division, or it supplies positive machine infinity as the result of the
involution. Execution then continues.

™ 13 Type mismatch

A string variable name was assigned a numeric value or vice versa. A
numeric function was given a string argument or vice versa.

LS 15 String too long
An attempt was made to create a string more than 255 characters long.

8 |

Appendix B/ BASICG Error Codes and Messages

(@]
=z

17 Can't continue
An attempt was made to continue a program that:
a. Has halted due to an error.
b. Has been modified during a break in execution.

c. Does not exist.

19 No RESUME

An error-handling routine was entered without a matching RESUME
statement.

21 Undefined error

An error message is not available for the error that occurred.

23 Line buffer overflow.

An attempt was made to input a line with too many characters.

29 WHILE without WEND
A WHILE statement does not have a matching WEND.

Disk Errors
50 Field overflow

A FIELD statement is attempting to allocate more bytes than were
specified for the record length of a direct-access file.

91

Model 4 Computer Graphics

52 Bad file number

A statement or command references a file with a buffer number that is
not OPEN or is out of the range of file numbers specified at
initialization.

54 Bad file mode

An attempt was made to use PUT, GET, or LOF with a sequential file,
to LOAD a direct file, or to execute an OPEN statement with a file
mode other than |, O, R, E or D.

57 Device /O error

An Input/Output error occurred. This is a fatal error; the operating
system cannot recover it.

61 Disk full

All disk storage space is in use.

63 Bad record number

In a PUT or GET statement, the record number is either greater than
the maximum allowed (65,535) or equal to zero.

92

Appendix B/ BASICG Error Codes and Messages

66 Direct statement in file

A direct statement was encountered while LOADing an ASClI-format
file. The LOAD is terminated.

93

—— Appendix C/ Subroutine Language Reference Summary

Appendix C/ Subroutine Language
Reference Summary

CIRCLE (radius, color,start,end,ar) Draws circle, ellipse, semicircle, arc, or point. (x,y) coordinates set by
SETXY.

CALL CIRCLE (100+1+2:+0,0)

CLS Clears Screen.
CALL CLS(2)

FVIEW (n) Returns viewport parameter.
I=FUVIEW(®)

GET (array,size) Reads the contents of a rectangular pixel area into an array for future use by PUT.
CALL GET(A,4000)

GPRINT (size,array) Displays textual data.
CALL GPRINT (28:ARRAY1)

GRPINI (option) Graphics initialization routine.
CALL GRPINI(®)

LINE (color,style) Draws a line.
Coordinates set by SETXY or SETXYR.
CALL LINE (1:-1)

LINEB (color,style) Draws a box.
Coordinates set by SETXY or SETXYR.
CALL LINEB (1,-1)

LINEBF (color) Draws a filled box.
Coordinates set by SETXY or SETXYR.
CALL LINEBF (1)

LOCATE (n) Sets the direction for displaying textual data.
CALL LBCATE

PAINT (color,border) Paints screen.
CALL PAINT(1,1)

PAINTT (arrayT,border,arrayS) Paints screen with defined paint style.
CALL PAINTT (A+1V)

POINT Returns pixel value at current coordinates.
K=POINT(M)

PRESET (color) Sets pixel ON or OFF.
CALL PRESET (@)

PSET (color) Sets pixel ON or OFF.
CALL PSET (@)

85

Model 4 Computer Graphics

SCREEN (type) Sets Screen/graphics speed.
CALL SCREEN (1)

SETXY (X,Y) Sets coordinates (absolute).
CALL SETXY(100:100)

SETXYR(X,Y) Sets coordinates (relative).
CALL SETXYR(5@,50)

VIEW (leftX leftY ,rightX ,rightY ,color,border) Sets viewport.
CALL VIEW(100+100,200,200:2,1)

96

Appendix D/ Sample Programs

Appendix D/ Sample Programs

i@ '/

20 ' Pie Graprh Prodram ("PECANPIE/GRA")

30

49 ' Ob.ect

S0 The obdect of this prodram is to draw a pie drarh of the

60 ' expenses for a diven month of eidht derpartments of a companvy s
70 ! along with the numerical value of each Pie section

ga ' representation.

g9

100 '

110 ‘ Runnind the Prodram

12e 7 The month and the amounts sPrent by each department are input:
13¢ and the Prodram taKes over from there,

14@

15@ ' Special features

i6e The amounts sepent by each account as well as the total

170 7 amount spPent are stored in strings. The Prodram will

180 standardize each strindg so that it is 9 characters long

190 and includes two characters to the ridht of the decimal

2eo ' point, This allows for input of variable lendth and an

210 ¢ optional decimal point.

22@

230 ' The various coordinates used in the pProdram are found

2490 based on the followindg equations:

250 '/

260 7 X = r % cos(theta)

270 7 y = r % sin(theta)

280

290 where x and v are the coordinatess r is the radiuss and theta
300 is the andle. (Note: The v-coordinates are alwavys multirlied
310 7 by #+.5. This is because the v pPixels are twice the size of the
320 X Pixels,)

330 '

340 7 If an andle theta is dgenerated by a percent less than 1% the
350 section is not drarhed:y and the next theta is calculated.

360 ' Howeversy the number will still be listed under the Kev,

37@ '

38@ ' Variables

3990 ACCTS$ (i) Description of the account

400 BUD$(1i) Amount spent by the account

410 / DS% Dollar sign (used in output)

429 ! HXCOL Column number for the pie section number

43¢ ! HYRW Row number for the pie section number

440 '’ I Counter

97

Model 4 Computer Graphics

459 MN$ Month

469 PER(1) Percent value of BUD$(1)

a’ze ' R Radius of circle

489 T@ Andle value line to be drawn

499 -’ T1 Andle value of the next line

500 TBUD% Total of all the BUD%$(1) ‘s

510 THALF Andle halfway between T1 and T® (used for

520 ' location Position for section number)

53 ' TILE$(1) Paint style for each section

540 TWOPI Two times the value of Pi

5590 Ko ¥-coordinate for drawing the line represented
560 ' by T@

S70 XP X-coordinate for Painting a section

11" Yo Y-coordinate for drawing the line represented
590 ' by TO

600 ' YP Y-coordinate for Painting a section

610

620 ‘ Set initial values

630

640 CLEAR 1000 ‘10-JAN-B4
650 DIM THALF(15),BUD$(15),ACCT$(15) »PER(1B)
669 TWOPI=2#3.14159

670 R=180

6B® DS5$="%"

69@ ACCT$(1) = "Sales"

700 ACCT$(2) = "Purchasing"
710 ACCT$(3) = "R&D M

720 ACCT$(4)
749 ACCT$(3)
75@ ACCTS$(B)
76@ ACCT$(7) "Security "

77@ ACCT$(8B) "Expansion"

780 TILE$(®)=CHR$(&H22)+CHR$ (&H®)

790 TILE$(1)=CHR$(&HFF)+CHR% (&HO)

B0® TILE$(2)=CHR$(&H99)+CHR%$ (&HEE)

B1® TILE$(3)=CHR$(&H99)

B20 TILE$(4)=CHRS$(&HFF)

B30 TILE$(5)=CHR$(8&HFQ)+CHR$(&HF@)+CHR$ (&HF)+CHR% (&HF)

840 TILE$(6)=CHR$(&H3C)+CHR$(H3C)+CHR%$ (&HFF)

B850 TILE$(7)=CHR$(8&H3)+CHR$(&HC)+CHR$(&H3@)+CHR$(BHCD)

860

B70 ' Enter values to be draphed, standardize them: and calculate
880 ' the percent they represent

gao

90@ CLR

91@ CLS

92@ SCREEN 1

930 PRINT @80 :"Enter month "

949 PRINT P24@+"Enter amount spent bvy"

"Accounting"
"Advertising "
"Utilities "

98

as5e

o960

870

2980

990

1000
1010
1020
1030
1040
1850
1069
1070
1080
1999
1100
1110
1120
1130
1140
1150
1160
1170
1180
11990
1200
12190
1220
1230
1249
1250
1269
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420

Appendix D/ Sample Programs

PRINT B320."$"

PRINT B@.,""

LINE INPUT "Enter month " iMN$
FOR I=1 TO 8

PRINT @265 +ACCTS$(I) "

PRINT B320.:"$"
PRINT @240 ,""

LINE INPUT "$"3iBUDS$(I)

IF INSTR(BUD$(I):".") =0 THEN BUD$(I)=BUDS(I)+".@@"
IF LEN(BUD$(I))<9 THEN BUD%$(I)=" "+BUD$(I):GOTO 1@40
TBUD$=STR$(VAL(TBUDS$)+VAL(BUD$(I)))

NEXT 1

IF INSTR(TBUD%.,".")=0® THEN TBUD$=TBUDS$+".,00"

IF LEN(TBUD%$)<9 THEN TBUD$=" "+TBUD%$:GOTO 1089

FOR I=1 TO B
PER(I)=VAL(BUD$(I))/VAL(TBUD%)*10@
NEXT 1

SCREEN @

‘" Draw the circle and calculate the location of the
the line numbers

’

’

CIRCLE(425+,120) 4R

FOR 1=0 TO B

TO=TWOPI/10@*PER(I)=T@

K@=425+R*C0S(T®)

YO=120-R*SIN(TO)*.5
T1=TWOPI/1@@*PER(I+1)+T0
THALF(I)=(T@+T1)/2
HXCOL=(425+R#*1.153#COS(THALF(I)))-1@
HYRW=INT(12@-R#*1,15#SIN(THALF(I))#*.,5)
IF PER(I)>1 THEN LINE (d425,120)-(X@,Y¥0)
GLOCATE (HXCOL »HYRMW) »@

IF I<8 and PER(I+1)>1 THEN PRINT #-3,I+1
NEXT I

’

Paint the apPropriate sections of the pie

+

FOrR I=@¢ TO 7
XP=425+R%*,5#COS(THALF(I)
YP=120-R*.3*#SIN(THALF(I))*.5
IF PER(I+1)<=1 THEN 1389
PAINT (XP¥YP) »TILE$(I) +1
NEXT I

‘" Print the Key for the drarph

’

GLOCATE(@,10) ,0

lines and

99

1430
1440
1450
1460
1470
1480
1499
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640

Model 4 Computer Graphics

PRINT #-3;"Expenditures for"
GLOCATE(® ,25) 0

PRINT #-3:MN%
GLOCATE(@:40) ,0

PRINT #-3,"# Description Amount"
FOR I=1 TO B
GLOCATE(@,(4+1)%15) :0

PRINT #-3,1
GLOCATE(4@,(4+1)%15) .0

PRINT #-3,ACCT$(I)
GLOCATE(130+(1+4)%15) 40
PRINT #-3,DS%iBUD$(1I)

DS¢=" "

NEXT 1

GLOCATE(®,195) ,0

PRINT #-3,STRING$(26.:"-")
GLOCATE(4024+210) 4@

PRINT #-3,"Total "STBUD%
FOR I=1 TO 1000¢

NEXT I

SCREEN 1

END

Appendix D/ Sample Programs

18 ' "THREEDEE/GRA"

20 7
3@ ‘ Obdect
ae '’ The obdject of this Pprodram is to produce a three

5@ ’ dimensional bar drarh representation of the dross
6@ ' income for a company over a one vear period.

7¢
B@ ’ Variables
9 A Vertical alphanumeric character

100 BMSG$ Bottom messade
110 ° CHAR% Disk file inPut field

120 ' Gl% Gross income

130 ' I Counter

14¢ ' J Counter

i5@¢ 7 MN$ Month

169 REC Record number of vertical character
17@¢ ' S1¢ Sindle character of vertical messade
180 ' TILES$ Tile pattern for Painting

190 ' TTINC Total income for the vear

200 ' it X-coordinate of bar

210 ¢ Y(1) Y-coordinate of bar

220

230 ‘InPut/outpPut

249 ' The program Prompts vou to enter the dgross incomes in millians,

250 ‘for each month., The Prodram requires these values to be between one
260 ‘and nine.,

270 '

2B@ ‘Set initial values

290 -

300 CLS

310 DIM Y(12),A(B) MN$(12)

320 DEFINT A

330 UMSG$=" Millions of dollars "
34¢ TMSG$="G r o s s I ncome For 19823"
350 BMSG$="M o n t h"

360 MN$(1)="January"

370 MN$(2)="February"

380 MN$(3)="March"

390 MN$(d4)="April"

400 MN$(5)="May"

410 MN$(B)="June"

420 MN$(7)="July"

430 MN$(B)="Audust"

440 MN$(9)="September"

450 MN$(102)="Dctober"

46@ MN$(11)="November"

478 MN$(12)="December"

48® TILE$=CHR$(&H99)+CHR$ (&HEB)

101

490
So0
510
S20
530
540
550
SE@
570
580
590
600
G10
620
630
640
650
66O
670
680
690
700
710
720
730
740
759
760
770
780
790
800
810
820
830
840
850
860
870
8g8e
890
200
910
920
930
840
950
960

Model 4 Computer Graphics

X=-10

“ InPut dross income» and calculate the Y-coordinate

FOR I=1 TO 12

CLS

PRINT "Enter dross income in millions (1-9) for "iMN$(I)
LINE INPUT "$"iGI$

Y(I)=205-20*VAL(GI%$)

TTINC=TTINC+VAL(GI%)

NEXT I

CLR

SCREEN @

‘ Draw the dgrarh and bars

FOR I=1 TO 12

CLS

K=XK+50

LINE (Ks»¥Y(I))=-(X+20,205)+1,BF
LINE -(X+40:195)

LINE -(X+40,Y(I)-10)

LINE -(X+20.,Y(I1)-10)

LINE -(Xs¥(I))

LINE (X420 Y (1)) -(X+d40,¥(I1)-1@)
PAINT(X+21,¥(I)+2)TILES$ 1

NEXT I

GLOCATE(40,215) 0

PRINT #-3:"Jan Feb Mar Apr May June July Aug Seprt
GLOCATE(290,230) +0

PRINT #-3,;BMS5GS$

FOR I=1 TO 10

IF I>9 THEN C=1 ELSE C=2
GLOCATE((C*10)-5:(20-1%2)%10) ,0
PRINT #-3,STR$(I)s"-"

NEXT 1

LINE (3540)-(35:205)

LINE -(639,205)
GLOCATE(@2:18B@) +3

PRINT #-3,:;UMSG%
GLOCATE(Z220+0) 10

PRINT #-3,TMSG%
GLOCATE(Z60+10) »0

PRINT #-3,:"(Total income is"3TTINC:" million)"
FOR I=1 TO 10000

NEXT 1

SCREEN 1

END

Oct

Nov

Dec"

102

Appendix D/ Sample Programs

. . - .
Printing Graphics Displays
There are many ways to use the stand-alone utilities (described in Graphic Utilities). The following discussion
demonstrates one way to use the utilities with graphic displays generated under BASICG.
To print graphics, follow these steps:

1. When TRSDOS Ready appears, set FORMS to allow 255 characters per line and 60 lines per page. (See your
Model 4 Disk System Owner’s Manual.)

2. Set the printer into Graphic Mode, if possible, and set the printer’s other parameters (elongation, non-elongated,
etc.), if applicable, according to instructions in your printer owner’s manual.

. Write, run and save your program as a BASICG program file.
. Save the graphics memory to diskette using GSAVE.
. Load the file into memory using GLOAD.

AN W AW

. Enter the print command GPRINT.

Example
1. Set FORMS with your printer’s printing parameters.
2. Load BASICG and type in this program:

S SCREEN @
10 DEFDBL Y
20 CLR
30 LINE (0,120)-(640+120)
49 LINE (320.,0)-(320,240)
5@ FOR X=0 TO G40
6@ PI=3.141259
70 K1=X/B4@*Z2*PI-PI
B0 Y=SIN(X1)%100
90 IF Y>1@00 THEN X=X+7
100 PSET (X:-Y+120)
110 NEXT X
120 GLOCATE(@.0) 0
13@ PRINT #-3, "THIS IS5 A SINE WAVE."

3. RUN the program.

The program draws a sine wave on the Graphics Screen (graphics memory) and prints the statement in line 130
(**'THIS IS A SINE WAVE."") on the Graphics Screen.

4. SINE (for sine wave) is the name we are giving this TRSDOS file. To save the contents of the graphics memory
(which now includes the converted video memory) to diskette, type: SYSTEM"GSAVE SINE" (ENTER.

5. The graphics memory is saved as a TRSDOS file on your diskette.
6. Exit BASIC by typing: SYSTEM (ENTER

103

Model 4 Computer Graphics

7. Type: GCLS
The graphics memory is now cleared.
8. To load the file back into memory. type:
GLOAD SINE (ENTER

The display is now on the Graphics Screen.

9. To print, type: GRRINT (ENTER).

FORTRAN Sample Programs

palgg C HIGH RESOLUTION GRAPHICS TEST - MAIN PROGRAM
gg2pg C

gaigg CALL GRPINI(#)
pgasgg CALL SCREEN(#)
gasgg c

ggepgg C CIRCLE TEST
gp180 c

ggsgg CALL CTEST
ggogg C

grLggg cC LINE TEST

gl1a¢ C

g1249 CALL LTEST
#1308 C

glage C LINEB TEST
g1sag c

glepgg CALL LBTST
g17g¢@ C

glsgg C LINEBF TEST
glogg C

g2pad CALL LBFTST
g219¢g c

g220¢0 C PAINTT TEST
g23g09 C

g24g9 CALL PTTTST
g2549 C

g26dp C GET AND PUT TEST
g2749 C

g2sgg CALL GPTST
g29gg c

g3ggg C PSET/POINT TEST
g31pg o

#3209 CALL PPTST
gi3gg C

#3499 C PRESET/POINT TEST
#3589 c

g36pg CALL PRETST
@379 o

Appendix D/ Sample Programs

g38dg C SCREEN TEST
g39gg cC

gagge CALL SCRTST
g41p8 C

ga208 C VIEW/FVIEW TEST
g43gg C

g44pg CALL VTEST
gasgg CALL CLS(2)

ga6gg END

105

Model 4 Computer Graphics

ga1rpg SUBROUTINE CTEST

gg2pg cC

gg3gg cC THIS SUBROUTINE TESTS CIRCLE, SETXY, AND PAINT
gaapg C

ggsgg LOGICAL MSG(29)

goegg CALL CLS

ge18¢ ENCODE (MSG,1@8)

ggsgg 199 FORMAT('TEST CIRCLE, SETXY, AND PAINT')
ggoggd CALL SETXY(@,#)

g1a@9 CALL LOCATE(f#)

#1199 CALL GPRINT(29,MSG)

#1209 CALL WAIT

g139g CALL VIEW(@,30,639,239,8,8)
glapg DO 1¢4 I=1,10¢

glsgg IX=MOD(I*17,648)

glegg IY=MOD(I*13,214)

g17pgg IR=I*].5

glsgg START=MOD(I,13)-6.4

glogg END=MOD(I*3,13)-6.4

gagpg IF (START.LT.END) GOTO 1
g210g T=START

g229¢ START=END

g2300 END=T

g2499 1 CONTINUE

g25g¢g RATIO=MOD(I*3,19¢)

g2e6gg IF (RATIO.GT.§) RATIO=RATIO/4f.
g279¢ CALL SETXY(IX,IY)

g28pg CALL CIRCLE(IR,1,START,END,RATIO)
g29gg 1¢ CONTINUE

g3ggg C

g31gg cC RANDOMLY FILL IN THE AREAS
g3249 C

#3340 DO 11 I=1,5¢

g34gg IX=MOD(I*23,644)

d3sgg IY=MOD(I*11,214)

g3609 CALL SETXY(IX,IY)

#3798 CALL PAINT(1,1)

g3sgg 11 CONTINUE

@394 CALL WAIT

gapgag CALL VIEW(@,$,639,239,-1,-1)
g419g9 RETURN

ga20g END

Appendix D/ Sample Programs

gg1pg SUBROUTINE LTEST

go2gg C

gglgg C THIS ROUTINE EXERCISES LINE
pgapgg o

ggsgg LOGICAL MSG(19)

ggepg CALL CLS (@)

gg1ag ENCODE(MSG, 148)

ggegg 199 FORMAT('LINE AND PAINT TEST')
ggogg CALL SETXY(#,8)

grogg CALL LOCATE(#)

gl1pg CALL GPRINT(19,MSG)

g12p9 CALL WAIT

gl3pg J=100

gl4apg DO 18 I=1,639,2

#1509 CALL SETXY(I,15)

glegp CALL SETXY(I,239)

#1748 CALL LINE(1,J)

glsgg J=J-1

g19pgg 1 CONTINUE

g2gpgd CALL WAIT

g2199 CALL VIEW(@,15,639,239,4,8)
g22g99 CALL CLS

g23gg C

g4p9 C DRAW WHITE LINES AND FILL IN RANDOMLY
gasgp C

#2609 IX=MOD(I*19,639)

@g279¢ IY=MOD(I*17,223)

g28gg CALL SETXY(IX,IY)

g29pp DO 11 I=1,144

g3gpg IX=MOD(I*23,639)

g319¢ IY=MOD(I*29,223)

g32p¢@ CALL SETXY(IX,IY)

#3389 CALL LINE(1,-1)

g349¢ 11 CONTINUE

g3sgg DO 12 I=1,58

giegp IX=MOD(I*31,639)

g37dp IY=MOD(I*37,223)

g3sgg CALL SETXY(IX,IY)

giogg CALL PAINT(1,1)

gapggg 12 CONTINUE

gal1pg CALL WAIT

ga22pg C

ga3gg C WHITE OUT SCREEN, DRAW BLACK LINES, PAINT BLACK RANDOMLY
ga40g C

gasgg CALL VIEW(#,15,639,239,1,1)
gaegg DO 15 I=1,140

pg4789 IX=MOD(I*11,639)

g4spg IY=MOD(I*13,223)

g49g¢g CALL SETXY(IX,IY)

gsgpp CALL LINE(#,-1)

gs149 15 CONTINUE

ps28p DO 16 I=1,50

#5398 IX=MOD(I*17,639)

107

Model 4 Computer Graphics

gs4pgg IY=MOD(I*19,223)

gs55098 CALL SETXY(IX,IY)

gsepg CALL PAINT(g,8)

g5788 16 CONTINUE

gssgg CALL WAIT

gs9gg CALL VIEW(#,8,639,239,60,8)
geggag RETURN

g619g END

108

#9199
ga2gp
ga3pg
gaagg
gospg
gaepg
ga18g
ggsgg
gaogp
g1gpg
gl1g9
#1200
#1309
91499
#1508
glr609
#1798
g1epg
g199g
g2app
g2199
g2299
#2399
g240¢
g2509

eleKe!

199

14

Appendix D/ Sample Programs

SUBROUTINE LBFTST
LINEBF TEST

LOGICAL MSG(1l1l)

CALL CLS

ENCODE (MSG,188)
FORMAT('LINEBF TEST')
CALL SETXY(#,f8)

CALL LOCATE(f#)

CALL GPRINT(11,MSG)
CALL WAIT

IXP=639

ICLR=1

DO lﬂ Ixsﬂ 112’

CALL SETXY(IX*2,IX+3d)
CALL SETXY (IXP,IXP-4§8)
CALL LINEBF(ICLR)
IXP=IXP-3

ICLR=ICLR-1

IF (ICLR.LT.#) ICLR=1
CONTINUE

CALL WAIT

RETURN

END

Model 4 Computer Graphics

ggrgg SUBROUTINE PTTTST

gp2gg cC

gg3gg cC PAINT WITH TILES TEST

gpapg C

gasgg LOGICAL A(65),B(4),IS(16),MSG(23)

poegp DATA A(l)/8/

gg78g C X

gagsgg DATA A(2),A(3),A(4),A(5)/X"41",X"'22",X'14"',X"'@g8"/
ggogg DATA A(6),A(7),A(8),A(9)/X'14",X'22",X'41",X'@gg"'/
glggg cC FINE HORIZONTAL LINES

gl1gg DATA A(14),A(11),A(12)/2,X'FF',X'g@g"/

gl cC MEDIUM HORIZONTAL LINES

g1349 DATA A(13)/4/

gl4gg DATA A(14),A(15),A(16),A(17)/X'FF',X'FF',X'@g@"' , X'@g@g"'/
glsgg C DIAGONAL LINES

glegg DATA A(18)/4/

#1749 DATA A(19),A(20),A(21),A(22)/X'@3',X"'@gC',X"'3¢"',X'Cg"'/
gisgg ¢ LEFT TO RIGHT DIAGONALS

glropgg DATA A(23)/4/

g2o9g DATA A(24),A(25),A(26),A(27)/X'C@"',X'38"',X'@gC"',X'@g3'/
g22189 C FINE VERTICAL LINES

g229¢ DATA A(28),A(29)/1,X'AA'/

g2389 cC MEDIUM VERTICAL LINES

g24p9 DATA A(38),A(31)/1,X'CcC'/

g25@d@ C COARSE VERTICAL LINES

#2600 DATA A(32),A(33)/1,X'Fg'/

@278 ¢ ONE PIXEL DOTS

g28gg DATA A(34),A(35),A(36)/2,X'22',X'gg"'/

g29gg cC TWO PIXEL DOTS

gippg DATA A(37),A(38),A(39)/2,X'99',X'66'/

#3198 cC PLUSES

#3299 DATA A(40),A(41),A(42),A(43)/3,X'3C',X"3C',X'FF'/
#3388 C SOLID

g34gg DATA A(44),A(45)/1,X'FF'/

g3sgg C BROAD CROSS HATCH

g36gg DATA A(46),A(47),A(48),A(49)/3,X'92',X"'92"',X'FF'/
#3788 cC THICK CROSS HATCH

g3spg DATA A(58)/4/

g39g4 DATA A(51),A(52),A(53),A(54)/X'FF',X'FF',X'DB',X'DB'/
gaggg ¢ FINE CROSS HATCH

ga1gg DATA A(54),A(55),A(56)/2,X'92' ,X'FF'/

gaz0¢ cC ALTERNATING PIXELS

g43gg DATA A(57),A(58),A(59)/2,X'55',X'AA"/

g44p9 DATA B(1),B(2),B(3),B(4)/1,8,1,X'FF'/

g4s9¢9 DATA IS(1),IS(2),Is(3),IS(4),1S(5),1s(6)/1,18,13,18,23,28/
gacpg DATA 1S5(7),IS(8),IS(9),IS(16),IS(11)/398,32,34,37,48/
g4a79¢9 DATA IS(12),IS(13),1S(14),1S(15),IS(16)/44,46,50,54,57/
gasgg CALL CLS

g49gg ENCODE(MSG, 18§8)

agsdgpg 190 FORMAT('PAINTT AND SETXYR TESTS')

gs19g CALL SETXY(@,#)

gs2dg CALL LOCATE(f)

#5399 CALL GPRINT(23,MSG)

110

gs499
gss599
gsegg
g578¢
gs8p9
#5909
peggg
pge1gg
g6200
g63gg
ge4gg
gesgg
geegg
pge784
gesgg
26909
pg7089
g719¢9
g728¢@
g7399
g74p0
#7509
g7698
#7788
pg78gg
g79gg@
gegpg
gslgg
g820g
g83gg
p84gg
gesgg

aaon

e XN e Ny

11

Appendix D/ Sample Programs

CALL WAIT
PAINT ON A BLACK BACKGROUND

DO 14 I=1,16

CALL SETXY(f@,48)

CALL SETXYR(639,199)

CALL LINEB(1,-1)

CALL SETXYR(-30§,-14¢)
ITMP=IS(I)

CALL PAINTT(A(ITMP),1,B)
CALL WAIT

CALL VIEW(@,49,639,239,4,8)
CALL VIEW(@,#,639,239,-1,-1)
CONTINUE

PAINT ON A WHITE BACKGROUND

DO 11 I=1,16

IF(I.EQ.12) GOTO 11

CALL VIEW(@,49¢,639,239,8,8)
CALL VIEW(P,#,639,239,-1,-1)
CALL SETXY(@,44)

CALL SETXYR(639,199)

CALL LINEBF(1)

CALL SETXYR(-38@,-10¢)
ITMP=IS(I)

CALL PAINTT(A(ITMP),fd,B(3))
CALL WAIT

CONTINUE

RETURN

END

111

Model 4 Computer Graphics

gp1gp SUBROUTINE GPTST

gg2gp C

gg3ge cC GET AND PUT TEST

gg4pgg cC

ggsgg LOGICAL A(1g9¢) ,MSG(16)
ggegg CALL CLS

ggIpp ENCODE(MSG,14¢)

ggegg 199 FORMAT('GET AND PUT TEST')
gaogg CALL SETXY(9,d)

glopg CALL LOCATE(f)

pl1gg CALL GPRINT(16,MSG)

g1290¢ CALL VIEW(#,38,639,239,8,8)
g13gg CALL SETXY(1g@,188)

glapgg CALL SETXYR(3§¢,34)

g1599 CALL LINEBF(1)

glepg CALL GET(A,18080)

g179¢ CALL CLS

glsgg CALL WAIT

glogg CALL SETXY(10¢,1989)

p2apg CALL PUT(A,l)

g210p CALL WAIT

g22p8p CALL VIEW(g,9,639,239,4,-1)
g23g8 RETURN

g24g09 END

112

golLgg
gag2pg
ggipg
gaagg
gasgg
goaegg
pgo1ag
ggsgg
ggogg
glrgpg
gl1pg
gl12pg9
g13pg
gl499
g1589
glegg
g179@
glsgg
g1ogg
g2009
g2199
g229g
g2399
g24p9
p2599
g2609
g27p9
g28gg
g29gg
g3pgg
g31p¢@
g32pgg
g33pg
#3499
g35080
g3e6gg
#3789
g38gg
g39gg
gapgpg
ga1gg
g4a299
g43p9
ga4pp
g4asgg
gaegp
g47998
gasgg
gaogg
gsagg
gs19¢

anon

199

[eXeNe!

1.
19

13
12

191

999

1g2

1499

Appendix D/ Sample Programs

SUBROUTINE PPTST

PSET AND POINT TEST

LOGICAL POINT,MSG(21)

CALL CLS

ENCODE(MSG, 18§8)

FORMAT('PSET AND POINT TEST')
CALL SETXY(@,8)

CALL LOCATE(f#)

CALL GPRINT(19,MSG)

CALL WAIT

CALL CLS

SET AND CHECK ALL PIXELS

DO lﬂ 1“51639

DO 11 J=ﬂ1239

CALL SETXY(I,J)
CALL PSET(1)
K=POINT(L)
IF(K.EQ.f) GOTO 999
CONTINUE

CONTINUE

RESET AND CHECK ALL PIXELS

DO 12 I=§,639

DO 13 J=f#,239

CALL SETXY(I,J)

CALL PSET(f)
K=POINT(L)

IF (K.EQ.l1) GOTO 999
CONTINUE

CONTINUE

CALL CLS
ENCODE(MSG, 181)
FORMAT('PSET AND POINT PASSED')
CALL SETXY(@,8)

CALL LOCATE(f@)

CALL GPRINT(21,MSG)
GOTO 1899

CALL CLS
ENCODE(MSG,182)
FORMAT('PSET AND POINT FAILED')
CALL SETXY(#,8)

CALL LOCATE(f)

CALL GPRINT(21,MSG)
CALL WAIT

RETURN

END

113

Model 4 Computer Graphics

ga1gg SUBROUTINE PRETST

go29g C

ggigg cC PRESET AND POINT TEST
pgpagg C

gasgg LOGICAL POINT,MSG(23)
goegg CALL CLS

pa79@ ENCODE(MSG,1d8)

ggsgg 1gg FORMAT ('PRESET AND POINT TEST')
ggogg CALL SETXY(@,#)

glppgg CALL LOCATE(#)

gl14d CALL GPRINT(23,MSG)
#1209 CALL WAIT

g13g¢ CALL CLS

glagg C

glsgg C SET AND CHECK ALL PIXELS
glegg C

#1799 DO 14 I=4,639

glsgg DO 11 J=§,239

glogg CALL SETXY(I,J)

@209 CALL PRESET(1)

g219¢9 K=POINT(L)

g220¢0 IF(K.EQ.f) GOTO 999
g23ggd 11 CONTINUE

g24g8 19 CONTINUE

g259@ C

g26gg C RESET AND CHECK ALL PIXELS
g27p8 C

g2804d DO 12 I=§,639

g29gg DO 13 J=84,239

g3pgg CALL SETXY(I,J)

g31p¢ CALL PRESET(f)

g3200 K=POINT(L)

g339¢ IF (K.EQ.1) GOTO 999
g34g9 13 CONTINUE

g3sgg 12 CONTINUE

g3egg CALL CLS

g37pg ENCODE(MSG,181)

g3sgg 191 FORMAT('PRESET AND POINT PASSED')
g39gg9 CALL SETXY(#.,d)

gagpg CALL LOCATE(f)

galgg CALL GPRINT(23,MSG)
pgaz200 GOTO 1gd@

ga3gg 999 CALL CLS

gasgg ENCODE(MSG,182)

gasgg 182 FORMAT('PRESET AND POINT FAILED')
gaegg CALL SETXY(@,8)

#4799 CALL LOCATE(f)

gasgp CALL GPRINT(23,MSG)
g49gg 1gp9 CALL WAIT

gsggpg RETURN

gs1gg END

114

Appendix D/ Sample Programs

go1gg SUBROUTINE SCRTST
go20p c

gg3gg C SCREEN TEST

goage c

gasgg LOGICAL MSG(1ll)

goepg CALL CLS

gar9g ENCODE (MSG,18f8)

pgasgg 169 FORMAT ('SCREEN TEST')
ggogg CALL SETXY(#,8)

glopg CALL LOCATE(f#)

glipgg CALL GPRINT(11,MSG)
g1299 CALL WAIT

g13gg CALL SETXY(3d@,126)
glagg CALL CIRCLE(1¢@,1,0.0,6.28,8.5)
#1599 CALL CIRCLE(1¢4,1,0.04,6.28,8.25)
plegdp CALL CIRCLE(56,1,0.4,6.28,8.5)
#1799 CALL PAINT(1,1)

glsgg C

glegg ¢ GRAPHICS SCREEN
pg2ogg o

#2199 CALL SCREEN(f)

g22p9g CALL WAIT

#2399 CALL WAIT

g24gg CALL WAIT

g250@ C

g26gg C TEXT SCREEN

g279¢9 C

g28g9 CALL SCREEN(1)

g2999 CALL WAIT

g3ggg CALL WAIT

g31¢p CALL WAIT

g32p9 C

g33gg C GRAPHICS SCREEN
g34gp (o

gisgg CALL SCREEN(f)

#3689 CALL WAIT

g3798 CALL WAIT

g3sgg CALL WAIT

g39gg RETURN

gapgg END

115

Model 4 Computer Graphics

ggl1gg SUBROUTINE VTEST

gaagg C

gg3gg cC VIEW AND FVIEW TEST

godgg C

ggspgp INTEGER FVIEW

ggegg LOGICAL MSG(19)

gag18@ CALL CLS

gasgg ENCODE(MSG,100)

ggogg 199 FORMAT('VIEW AND FVIEW TEST')
glgpgg CALL SETXY(#,8)

#1199 CALL LOCATE(f#)

gl209 CALL GPRINT(19,MSG)

#1300 CALL WAIT

gl4gg C

glsgg C DRAW VIEWPORT AND CIRCLES
glegg C

#1799 CALL VIEW(@,40,639,239,4,1)
glsgg CALL DCIRCL(1)

g19gg C

g298d C DRAW VIEWPORT AND LINES
g2194 C

g22p99 CALL VIEW(2¢,5¢,619,229,1,8)
pg23d9 CALL DLINE(f)

g240p C

g25098 o DRAW VIEWPORT AND CIRCLES
#2690 C

g27p¢ CALL VIEW(4f,60,599,209,8,8)
g28gg CALL DCIRCL(1)

g29gg C

g3gpg C DRAW VIEWPORT AND LINES
g31gg cC

g3zgg CALL VIEW(6#,74,579,199,1,1)
g33pg CALL DLINE(#)

#3404 C

g3s59g9 (o CLEAR SCREEN

gl6gg c

g3788 IX1=FVIEW(g)

gisgg IY1=FVIEW(1l)

#3999 IX2=FVIEW(2)

gapgag IY2=FVIEW(3)

g41gg CALL VIEW(68-IX1,78-1IY1,6@+IX2,48+1Y2,8,1)
ga208¢ CALL CLS

ga3pg RETURN

gadgp END

116

g4asgg
gaegg
g4a7p8
g48gg
g49gg
gsggg
gs1gg
g52090

253099
#5409
#5589
#5609
#5788
gs8pgg
#5989
geggg
gelgg

19

11

Appendix D/ Sample Programs

SUBROUTINE DCIRCL(ICLR)

CALL SETXY(188,108)

DO 1¢ I=5,300,5

CALL CIRCLE(I,ICLR,§.9,6.28,8.5)
CONTINUE

CALL WAIT

RETURN

END

SUBROUTINE DLINE(ICLR)
DO 11 I=2,204,4

CALL SETXY(-14,-14)
CALL SETXY(I+2f4@,I)
CALL LINE(ICLR,-1)
CONTINUE

CALL WAIT

RETURN

END

117

Model 4 Computer Graphics

gg1gg SUBROUTINE WAIT

ggapg C

gg3gg cC THIS SUBROUTINE INTRODUCES A TIME DELAY
ggagg C

gasgg DO 11 J=1,28

pg6gg DO 1@ I=1,1@@9@89

gg7ep 1gd CONTINUE

ggsgg 11 CONTINUE

ggopgg RETURN

grogg END

118

Appendix E/ Base Conversion Chart

Appendix E/ Base Conversion Chart

DEC. HEX . BINARY DEC. HEX. BINARY
) 20 V0000000 ae 28 20101000
1 o1 00000001 a1 2 20101001
2 0z 20000010 42 2A 001010190
3 03 00000011 a3 2B 00101011
4 04 00000100 aa 2C 20101100
5 05 00000101 4as 2D 20101101
B8 06 20000110 a6 2E 00101119
7 87 00000111 a7 2 P0101111
B @8 00001000 a8 30 00110000
9 29 00001001 49 31 20110001
10 2A 00001010 50 32 00110010
11 2B 00001011 51 33 20110011
12 ocC 00001100 52 34 00110100
13 20 00001101 53 35 po110101
14 13 00001110 54 36 00110110

15 oF P2@21111 55 37 20110111
16 10 00010000 S6 38 00111000
17 11 00010001 57 39 00111001
18 12 00010010 SB 3A 00111010
19 13 20010011 59 3B 00111011
20 14 00010100 60 3C 00111100
2 15 00010101 61 3D 00111101
22 16 00010110 62 3E 00111119
23 17 00010111 B3 3F 00111111
24 18 00011000 64 49 01000000
25 19 00011001 65 41 01000001
26 1A 00011010 66 4z 01000019
27 1B 00011011 67 43 21000011
28 iC 00011100 68 44 01000100
29 1D 00011101 69 45 01000101
30 1E 00011110 70 48 010001190
31 1F 2011111 71 47 01000111
az 20 00100000 2 us 01001000
33 21 00100001 73 49 21001001
34 2 00100010 74 aA 01001010
35 23 00100011 75 4B 01001011
36 24 00100100 76 ac 01001100
37 2 00100101 77 40 01001101
38 2 00100110 78 4E 01001110
39 i 00100111 79 aF 01001111

119

HEX .,

BINARY

01010000
01010001
g1e1001@
21010011
1010100
1010101
01010110
p1e10111
01011000
01011001
1011010
1011011
1011100
21011101
21011110
o1o11111
21100000
01100001
21100010
1100011
01100100
01100101
01100119
21100111
21101000
01101001
01101010
1101011
01101100
21101101
01101110
e1101111
@1110000
1110001
1110010
a1110011
0111010¢
21110101
e1110119
01110111

HEX .

Model 4 Computer Graphics

BINARY

01111000
a1111001
01111010
01111011
01111100
a1111101
011111190
21111111
10000000
10000001
10000010
10000011
10000100
10000101
10000110
1ee00111
10001000
19001001
10001010
10001011
10001100
10001101
10001110
1p001111
10010000
10010001
10010010
10010011
10010100
19010101
10010119
19010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
19011111

120

HEX .

BINARY

10100000
10100001
1¢100010
10100011
10100100
190100101
10100110
10100111
lo101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111
10110000
10110001
10116010
10110011
10110100
10110101
190110110
16110111
10111000
16111201
1111010
1111011
190111100
10111101

101111190
16111111
11000000
112000001
11000010
11000011
11000100
11000101
11000110
11000111

Appendix E/ Base Conversion Chart

11001000
11001001
11001019
11001011
11001100
11de1101
11001110
11001111
11010000
11010001
11010010
11010211
11010100
11010101
11010110
11210111
11211000
11211001
11011010
11011011
11011100
11011101
11811110
11e11111
11100000
11100001
11100010
11100011
11100100
11100101
11100110
11122111
11101000
11101001
11101210
11101011
11101100
11101101
11101110
11101111

121

Model 4 Computer Graphics

DEC. HEX . BINARY

240 Fo 11110000
241 F1 11110001
242 F2 11110010
243 F3 11110211
244 Fd 11110100
245 F5 11110101
246 FB 11110110
247 F7 11110111
248 F8 11111000
249 Fa 11111001
250 FA 11111010
251 FB 11111011
252 FC 11111100
253 FD 11111101
254 FE 11111110

2595 FF 11111111

Appendix F/ Pixel Grid Reference

Appendix F/ Pixel Grid Reference

The following hexadecimal numbers include commonly used tiling designs.

Important Note: You cannot use more than two empty rows of tiles when tiling or you'll get an Illegal Function
Call error.

Example (four rows of empty tiles):

CHR$ (&HFF)+CHR$ (&HFF)+CHR$ (&H@D) +CHR$ (&HOD) +CHR$ (&H®O) +CHR$ (RHOO)
gives you an Illegal Function Call error.

L. #XH

CHR$ (&H41)+CHR$ (&H22)+CHR$ (&H14)+CHR$ (&H@B)+CHR$ (RH14)
+CHR$ (&H22) +CHR$ (&H41) +CHR$ (&HOD)

Hex Decimal
g 1 g g 8 g 1 41 65
] g 1 g g g 11 g 20 34
g g g 1 g 118 |# 14 20
g g g g 1 g 1o g 08 8
g g g 1 g 119 g 14 20
) g 1 g g g 11 g 22 34
g | g g g g1 9 1 41 65
g g g g g g |8 g 00 0
2. *“Fine’" horizontal lines
CHR$ (RHFF) +CHRS (8HOO)
Hex Decimal
1 1 1 1 1 1 1 1 FF 255
g g g g [g1 g 00 0

123

3.

*“Medium’’ horizontal lines

CHR$ (&HFF)+CHR$ (&HFF) +CHR$ (8&HO®) +CHR$ (&:HO®)

Model 4 Computer Graphics

1 1 1 1 1 1)1 1
1 1 1 1 1 1|1 1
g |9 g 198 |28 gle |9
g |2 g |8 g gl1e |9

(Right to left)
CHR$ (&H@3)+CHR$% (&H@C) +CHR$ (&H30®)+CHR% (&HC@)

. Diagonal lines

g g ' g g g1l 1
g 8 g) 1 1| # g
g g 1 1 g g9 g
1 1 g p g gl e g

(Left to right)
CHR$ (&HCO®)+CHR$ (&H3D)+CHR$ (&HAC)+CHR$ (BHO3)

1 1 g g g8 g
) g 1 1 g1 8 8
g g g a 1 118 ')
g g] g g g1 1

Hex
FF
FF
00

00

Hex
03
oC
30

Co

Hex
co
30
oC

03

Decimal
255
255

0

0

Decimal

3

12

48

192

Decimal
192
48

12

124

Appendix F/ Pixel Grid Reference

5. “‘Fine’" vertical lines

CHR$ (&HAA)
Hex Decimal
1 ') 1 g 1 g |1 '} AA 170
6. “‘Medium’’ vertical lines
CHR$ (&HCC)
Hex Decimal
1 1 g g 1 1|9 g 66 204
7. *‘Coarse’’ vertical lines
CHR$ (&HF@)
Hex Decimal
1 1 1 1 '] g '] ') FO 240
8. One-pixel dots
CHR$(B&HZ2Z)+CHR$ (BHQQ)
Hex Decimal
g g 1 '] g 1 '] 22 34
g g '} g gl g 00 0
9. Two-pixel dots
CHR% (&H99)+CHR$ (&HGG)
Hex Decimal
1 g) 1 1 gl g 1 99 153
g 1l 1 ['] '] 1 1 [} 66 102

125

Model 4 Computer Graphics

10. Pluses (“*+'")
CHR® (8H3C)+CHR$ (&H3C) +CHR$ (&HFF)

Hex Decimal
g g 1 1 1 119 [} 3C 60
g 1 1 1 1| g 3C 60
1 1l 1 1l 1l 1 1 1 FF 255
11. Solid (all pixels ON)
CHR% (&HFF)
Hex Decimal
1l 1 1 1 1 1 1 1 FF 255
12. “*‘Broad’’ cross-hatch
CHR$ (&H92)+CHR$ (&HO92)+CHR% (&HFF)
Hex Decimal
1 [} a 1 g a 1 g 92 146
1 [’ [} 1 [’ a 1 g 92 146
1 1l 1 1 1 1l 1 1 FF 255
13. “*Thick’’ cross-hatch
CHR$ (&HFF)+CHR$% (& HFF) +CHR% (&HDB) +CHR$ (&HDB)
Hex Decimal
1 1l 1l 1 1l 1l 1 1l FF 255
1 1l 1 1 1 1l 1 1 FF 255
1 1 g 1 1 gl1 1 DB 219
1 1 [} 1l 1 g 1l 1 DB 219

126

Appendix F/ Pixel Grid Reference

14. “‘Fine’’ cross-hatch
CHR$(&H92)+CHR% (&HFF)

Hex Decimal
1 g g 1 g gl1 g 92 146
1 1 1 1l 1 1 1 1 FE 255
15. Alternating pixels
CHR$ (BHSS)+CHR% (&HAA)
Hex Decimal
'} 1 '} 1 g 1 [} 1 55 85
1 g 1) 1 g11 g AA 170

Appendix G/ Line Style Reference

Appendix F/ Line Style Reference

Type Binary Numbers Hex Decimal
Long dash 0000 0000 1111 1111 &HOOFF 255
Short dash 1111 0000 1111 0000 &HFOF0 -3856
“Short-short” dash 1100 1100 1100 1100 &HCCCC -13108
Solid line 1111 1111 1111 1111 &HFFFF -1
OFF/ON 0101 0101 0101 0101 &H5555 21845
“Wide" dots 0000 1000 0000 1000 &H0808 2056
“Medium” dots 1000 1000 1000 1000 &H8888 -30584
“Dot-dash” 1000 1111 1111 1000 &HBFF8 -28680

129

absolute coordinates
AND 34, 35, 80, 87
arc 13, 18

array 19-21. 34, 35, 40. 72-74, 80, 89-90

40-42,83

array limits 20. 73,74
array name 19. 20, 34, 87. 88
aspect ratio 13. 14,17, 72

BASIC 5,11, 19, 34-35, 70

BASICG 7. 11. 12, 28, 33. 34, 35,69, 97, 103
BASICG command 1113

BASICG error messages 89-93
BASICG functions 12, 13

binary numbers 24, 27-29, 129
Cartesian system 8. 12, 40, 82, 83
CIRCLE 11, 13-19. 71, 72, 87, 95
CLR 11, 87

CLS 71. 87.95

communication drivers 45

current coordinates 69, 70, 72-73, 82
DEBUG 45

DO 73-74, 81, 83

double-precision 12

cllipse 5,17-19. 71, 87

FORMS 47,103

FORTRAN 5,45, 69-71, 75, 104, 105
free memory 11, 28. 70

FVIEW 71, 84, 95

GCLS 45, 48, 87

GET 11, 19-21, 35, 40, 71, 72-73, 95

GLOAD 45. 46, 49, 87-88
GLOCATE 11, 21, 22, 32, 87-88
GPRINT 45.47.71.74. 75, 88,95
GPRT 2 45, 48, 88

GPRT 3 45, 47-48. B8

graphics board 85. 86

GRAPHICS ERROR 70, 75

graphics memory 45-47, 48. 49, 103-104
graphics utilities 45-49

GROFF 45, 48, 88

GRON 45, 49, 88

GRPINI 71, 75, 95

GRPLIB/REL 69, 70

GSAVE 45, 49, 88

hard disk 4

hex numbers 23, 24, 28-29, 123. 129

initialization 69-70

integer 13-14, 19, 20. 73

INTEGER 72,73, 74, 76, 82-83
integer range 8. 15, 23, 24, 75-76. 89

131

Index

1/0 port mapping 85

LINE 11, 23-25, 69, 71, 88, 95
LINE-CMD 69, 75

line styles 23. 24,129

LINEB 69, 71, 76-77, 95
LINEB-CMB 69

LINEBF 69, 71, 76-77. 95
LINEBF-CMD 69

loading BASICG 11,12
LOCATE 71,95

LOGICAL 72-81, 82-84
notational conventions 5
numeric expressions 15, 26
numeric values 13

options programming 86

OR 34, 35, 80-81. 87
PAINT 1. 25-30. 40. 69. 71, 78. 88. 95
PAINT-CMD 69
PAINTT 69. 71, 78-79, 95
PAINTT-CMD 69
pie-slice 13
pixel 7. 8, 23-24, 26, 27, 30-34, 35, 71. 73, 79, 80, 84,
85. 123
19-20, 35, 38, 39, 72-73, 80-81, 88
12, 30, 31, 71, 84, 88, 96

pixel area
POINT

PRESET 11,32, 33, 34, 35, 71. 79, BO-81, 87. 88. 96
previous coordinates 69. 70, 72-73. 82

PRINT #-3 11, 33, 88

printers 5

PSET 11, 33-35. 38, 71. 80, 87. 88. 96
PUT 11, 19-20. 34-36, 38, 39, 71, 80-81, 88
real 20, 73

REAL T2

relative origin 40, 82-83
resolution 7

SCREEN 11,39, 71, 81, 88, 96

SCREEN-CMD 12, 81

screen dump 47

SETXY 69,70, 71, 73, 76. 82. 96
SETXYR 69, 70, 71. 75-76. 82, 96
single-precision 12-13, 17-18, 87
starting-up 12

strings 26-28
subrouting library 7. 69, 70, 83. 95
text screen 8, 11,13, 39, 81, 85, 87

video display 8. 85

VIEW 11, 40-42, 71, 82-83. 88. 96
VIEW (command) 11, 40-42

VIEW (function) 12, 43-44, 82, 83, 88
viewport 11, 12, 40-44, 71, 82-83, 84, 88

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U. K.
91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N.S.W. 2770 5140 NANINNE WEST MIDLANDS WS10 7JN

4/84-TM Printed in U.S.A.

